Treebank Analysis and Search Using an Extracted
Tree Grammar

Seth Kulick and Ann Bies

Linguistic Data Consortium
University of Pennsylvania
{skulick,bies}@ldc.upenn.edu®

November 13, 2009

Abstract

We describe here a new approach to the problem of analyzing and comparing
two sets of trees that contain annotation for the same data. This is an impor-
tant problem both for evaluating inter-annotator consistency during treebank
construction and also for evaluating parser output as compared to the gold
trees. Our approach is based on a decomposition of the trees into small syn-
tactic chunks, inspired by work in Tree Adjoining Grammar. This allows
queries to be stated in more meaningful syntactic units, and the resulting
system produces confusion matrices showing disagreements on these units
across the two sets of trees. There is also a significant potential speed ad-
vantage for treebank search, since duplicate information is removed from the
treebank, and a search for the syntactic chunks simply becomes a search on
integers associated with each sentence.

1 Introduction

A crucial issue when constructing a treebank is to ensure consistency in annotation
decisions among the annotators. This is usually done by having multiple annotators
annotate the same file, and then comparing the different annotations of that file.
One way in which this has been done is to use the same metrics as used for scoring
parser output against gold trees. This makes sense, since the two problems can

*We would like thank Aravind Joshi, Anthony Kroch, Mitch Marcus, and Mohamed Maamouri
for many useful discussions. This work was supported in part by the Defense Advanced Research
Projects Agency, GALE Program Grant No. HRO0011-06-1-0003. The first author was also sup-
ported under the GALE program, DARPA/CMO Contract No. HR0011-06-C-0022. The content of
this paper does not necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

both be viewed as the same, as comparing two sets of trees to determine how well
one matches against the other.

For example, the recent revision of the Penn Arabic Treebank [11] reported
inter-annotator agreement (IAA) using the evalb program.! evalb determines a
single score for the two sets of trees, by comparing matching constituent brackets
across the two sets of trees.” However, while the evalb score can be viewed as a
very rough approximation to the consistency of annotation, it is of little use in the
important task of pinpointing where the annotators are disagreeing. To some extent
this can be improved by breaking down the bracketing scores by bracket type (i.e.,
an NP score, an SBAR score, etc.). However, this is still just an approximation to the
sorts of decisions actually made during annotation. One other approach that has
been taken is to break down the two sets of trees into single-level head-dependency
relations, as done for English in [5] and for Arabic in [10, 11].

There are of course systems available for searching a treebank corpus for var-
ious structures - e.g., [7, 12, 13]. These are extremely useful and heavily used
(among other purposes) in corpus construction for identifying illegal structures
that were mistakenly annotated. However, they also do not allow the comparison
of structures across two sets of trees. Also, searches are stated in terms of in-
dividual nodes in the phrase-structure trees. While this allows great flexibility in
searching for structures, it requires a certain amount of trickery to translate a search
for meaningful syntactic units into the combination of single nodes.

Currently the analysis of disagreements among annotators in IAA annotation
can only be done satisfactorily by painstaking and time-consuming manual com-
parison of the sets of trees, if the goal is to understand the underlying annotation
decisions that led to the reported errors.

We present here an approach to a system for analyzing and evaluating two sets
of trees in such a way as to allow search explicitly on these structures of interest,
returning an analysis of differences on these structures. We break the trees down
into meaningful syntactic units and search and evaluate based on these units, there-
fore returning information which is more aligned with the decisions made during
annotation or mimicked during parsing. This approach is rooted in the long line of
research on Tree Adjoining Grammar [9] which has been heavily used for various
purposes in NLP but not previously for the purposes described here.

In Section 2 we discuss the particular data set we are using, which provides
the examples of tree extraction and query search in the following sections. Section
3 describes the process of decomposing the full trees into the core syntactic units.
This is similar to previous work in this tradition, although with some novel aspects,
such as including the function tags in the extracted trees. In Section 4 we discuss
how search on a treebank is reconceptualized and implemented to work on the tree
decomposition of the full trees. In Section 5 we run through some examples of
queries and results, and demonstrate the utility of this approach. Section 6 is the

"http://nlp.cs.nyu.edu/evalb/
21t also produces a few secondary numbers, such as the number of crossing brackets.

conclusion and discusses several possibilities for future work.

2 Data Set

There are several corpora under construction which are appropriate candidates for
utilizing the work described here. We focus in this paper on the Penn Arabic Tree-
bank, which has recently undergone a substantial revision [11] in its guidelines
and for which more data is being annotated. Further, while there have been im-
provements in Arabic parsing ([10, 11]), there are still many questions as to which
aspects of the tree structure are accurately recovered by the parser and which re-
main problematic.

Given the choice between working with a limited number of IAA files, and the
more substantial number of trees available from parsing work, we have chosen to
work first with the parse files. This is mostly because of the greater number of
samples available for the development of this approach. As discussed above, it is
basically the same problem regardless of which pairs of trees we work with.

The corpus we are using consists of the recent Arabic Treebank revisions of
parts ATB1, ATB2, and ATB3.> For the parsing work, we used a previously-
proposed train/dev/test split.*

The problem of segmentation of Arabic text into the tokens that match the gold
tokens is not a simple one, and previously published work on parsing Arabic (e.g.,
[10, 11]), simply assumes gold tokenization for input to the parser. We instead use
a morphological tagger and tokenizer [15], and for parsing use the Bikel parser.’

3 Elementary Tree Extraction

As discussed above, we are aiming for an analysis of the trees that is directly ex-
pressed in terms of the syntactic constructions that annotators have in mind during
annotation, or are mimicked during parsing. Towards this end we utilize ideas

3LDC2008E61 (Arabic Treebank Part 1 v4.0), LDC2008E62 (Arabic Treebank Part 2 v3.0), and
LDC2008E22 (Arabic Treebank Part 3 v3.1), respectively.

*http://nlp.stanford.edu/software/parser-arabic-data-splits.shtml

Shttp://www.cis.upenn.edu/~dbikel/software.html

OThere is an important issue here for parser evaluation that we can only discuss briefly. The
evalb program depends on the two sets of trees having exactly matching tokenizations, so that
the corresponding constituent spans can be compared. The spans cannot be compared when the
tokenizations do not match. In fact, while the tagger has an overall tokenization accuracy of about
98.5%, even this level of accuracy is catastrophic for evalb, since out of 1739 sentences in the dev
section (of length <= 40), 338 differ in tokenization and so cannot be evaluated, and for this reason
we do not present a parsing score. See [17] for a discussion of a similar problem for Chinese parsing
evaluation. A good candidate for overcoming this problem is the Sparseval software [14], which
allows the separate specification of how tokens are aligned. This is somewhat orthogonal to the main
concerns of this paper, but we note here that this issue does not prevent the evaluation and analysis
under our system. See footnote 13 for more detail on this issue.

TOKENS

<0> wa {and} <1> jar+at {occur+it/they/she]}
<2> Al+masiyr+ap {thet+march+[fem.sg.]} <3> Al+>uxoraY {thet+another}
<4> fiy {in} <5> muxay~am {refugee camp}

<6> jabAlyiA {Jabaliya} <7> 1i {for/to}

<8> 1lAji}+iyna {refugee+[masc.pl.gen.]} <9> S$amAl {north}

<10> gaz~+ap {Gaza+[fem.sg.]} <11> bi {by/with}

<12> mu$Arak+ap {participation+[fem.sg.]}

<14> Al+>aTofAl {the+children}

FULL TREE

(S (CONJ <0>wa)

(VP

(PV+PVSUFF_SUBJ:3FS <1>jar+at)
(NP-SBJ (DET+NOUN+NSUFF_FEM_SG <2>Al+masiyr+ap)
(DET+ADJ <3>Al+>uxoraY¥))
(PP-LOC (PREP <4>fiy)
(NP
(NP (NOUN <5>muxay~am})
(NP (NOUN_PROP <6>jabAliyA)))
(PREP <7>11)
(NP (NOUN+NSUFF_MASC_PL_GEN <8>1Aji}+iyna)))
(NP-LOC (NOUN <9>S$amAl)
(NP (NOUN_PROP+NSUFF_FEM_SG <10>gaz~+ap)))))
(PP-MNR (PREP <11>bi)
(NP (NOUN+NSUFF_FEM_SG <12>mu$Arak+ap)
(NP (NOUN_NUM+NSUFF_FEM_PL <13>Ea$ar+At)
(NP (DET+NOUN <14>Al+>aTofAl)))))))

(PP

EXTRACTED ETREE INSTANCES

o U1 W N

~

10
11

Figure 1: An example of Tree Decomposition resulting in extracted elementary
trees (etrees) (Translation of Arabic sentence: Another march occurred in the north
Gaza Jabaliya refugee camp for refugees with the participation of scores of chil-

dren.)

ETREE TEMPLATE ANCHORS
Al (A1) <0> CONJ wa
(S (VP Al NP[t]-SBJ")) (Al) <1> PV+PVSUFF_SUBJ:3FS jartat
(NP A1) (Al) <2> DET+NOUN+NSUFF_FEM_SG Al+masiyr+ap
Al (A1) <3> DET+ADJ Al+>uxorayY
(PP [b]-LOC Al NP") (Al) <4> PREP fiy
(NP Al (NP A2)) (A1) <5> NOUN muxay~am
(A2) <6> NOUN_PROP jabAliyA
(PP A1 NP") (A1) <7> PREP 11
(NP Al) (Al) <8> NOUN+NSUFF_MASC_PL_GEN 1Aji}+iyna
(NP [b]-LOC Al (NP A2)) (A1) <9> NOUN $amAl
(A2) <10> NOUN_PROP+NSUFF_FEM_SG gaz~+ap
(PP[b]-MNR Al NP") (Al) <11> PREP bi
(NP A1 (NP A2 (NP A3))) (A1) <12> NOUN+NSUFF_FEM_SG mu$Arak+ap
(A2) <13> NOUN_NUM+NSUFF_FEM_PL EaSar+At
(A3) <14> DET+NOUN Al+>aTofAl

<13> EaSar+At {scores+[fem.pl.]}

from a line of research on decomposing full trees in a treebank into smaller syntac-
tic chunks. Usually based around Tree Adjoining Grammar (TAG) or some variant
(loosely referred to as “tree grammars”), this work aims to identify the smaller
trees that are the “building blocks” of the full trees of that treebank, and that are
then used for such purposes as training parsers or as a basis for machine transla-
tion systems [3, 4, 16]. However, this approach has not been utilized for searching
within a treebank, as far as we know.

As in the earlier TAG work we use head rules to decompose the full trees
and then extract out the “elementary trees”, which are the small syntactic chunks.
For our grammar we use a TAG variant with tree-substitution, sister-adjunction,
and Chomsky-adjunction ([4]). We do not have space here to review these basic
aspects of the extraction in detail, but instead we give an example in Figure 1, and
highlight some aspects of our tree extraction that we feel are worthy of note.’

The full tree is shown in the middle of Figure 1.8 Each token is listed as
(POS <index> word), where <index> is the index of the word in the sentence.
To avoid cluttering up the tree structure, we include at the top a separate listing of
the glosses for each word.

The extracted elementary trees are shown at the bottom. Each decomposed tree
has a particular tree structure, and it is possible (indeed, it is the entire reason for
this approach) that the same tree structure is used in more than one decomposed
tree fragment. We call each such elementary tree structure an “etree template”, and
a particular instance of that template, together with the “anchors” (tokens) used
in that instance of that template, is called an “etree instance” (“etree” is short for
“elementary tree”).

For example, the template (S (VP Al NP[t]-SBJ")) is used once in this tree
decomposition (although many times in the entire corpus), where A1 is the anchor
of the template, which is associated with a particular word in an etree instance that
uses this template. In this case, instance #2 uses this template, and the anchor is
the verb at index <1>. The * indicates that the NP [t]-SBJ” node is a substitution
node, meaning that another etree instance substitutes into it to reform the original
full tree (in this case, etree instance #3).

The template (NP Al) is used in two etree instances, #3 with anchor <2> and
#8 with anchor <8>. Templates can have more than one anchor. For example, the
template (NP [b]-LOC Al (NP A2)) is an example of a two-level idafa structure,
an extremely common structure in Arabic, in which two or more tokens form a
tight syntactic unit. (In this particular case, the entire structure projects with a LOC
function tag as well.) Etree instance #9 uses this template, with two anchors, the
words at indices <9> and <10>. Instance #11 is an example of a three-level idafa.

A fundamental idea of this approach (as in all TAG-related work) is that the
modifiers are separated from non-recursive structures. For example, the two-level

7See [8] for an earlier and somewhat different approach to extracting a tree grammar from the
Arabic Treebank.
8Throughout this paper we use the Buckwalter Arabic transliteration scheme [2].

#2

#1,MOD #3,SUB #5,MOD #10,MOD

\ \ \
#4,MOD #6,SUB #11,SUB

#7,MOD #9,MOD

\
#3,SUB

Figure 2: The derivation tree for the extraction in Figure 1

idafa at indices <5>,<6> is separated from its modifier PP and NP-L1OC sisters.”

Some modifiers result in etree templates that are just a single anchor, with no
structure. For example, the template Al is used for instance #1, of just the typical
sentence-initial conjunction wa, and also for the adjective <3>, which is separated
out from the noun it modifies (<2>).

It is important to note that each etree instance has at least one anchor, and every
tree token is an anchor for some etree instance. It therefore becomes possible to
examine the properties of an etree instance that a tree token is the anchor for, and
to compare corresponding instances for the same tree token across two different
annotations, such as gold/parser-output trees or between the trees for two different
annotators. This property (traditionally called “lexicalization” in the Tree Adjoin-
ing Grammar literature) is taken advantage of for query searching and comparison
in Sections 4 and 5.

As usual in tree grammar extraction, the extraction process for each full tree
produces not just the collection of etree instances, but also a “derivation tree” that
is in effect a record of how the etree instances combine together again to form the
original full tree. The derivation tree for the extraction just described is shown in
Figure 2, in which the nodes of the tree correspond to the etree instances in Figure
1, and the SUB and MOD indicate the type of attachment (substitution and modi-
fication).'® For example, the derivation tree shows etree instance #4 modifying
instance #3, which in turn substitutes into instance #2.

Unlike all earlier work in tree decomposition that we know of, we also include
function tags in the extracted trees. While a prominent feature of the Penn Treebank
and the Penn Arabic Treebank, they have been mostly ignored in parsing (with
some exceptions - e.g., [1, 6]) and in previous tree extraction work.'!

9The “extra” NP that scopes around the span <5, 10> in the full original tree is therefore missing
from the extracted instances. If recreating the original tree from the extracted trees, it can be added
back in to exactly recreate the original tree.

10This derivation tree is a bit of a simplification. The complete tree also includes the addresses in
each etree template of the locus of substitution or modification, and for sister adjunction, the direction
of modification. We leave out these details here.

Except for the use of the function tags as a way to determine the argument/adjunct classification

Since the function tags are an important part of the annotation (see the argu-
ments in [1, 6]), and since they are part of the annotation process (and so something
to be checked in the inter-annotator agreement files), we include them in the tree
decomposition. We break the tags up into two groups “‘syntactic” and “semantic”.
The TAG decomposition views the former as being imposed on a node from the
top, and the latter as arising from the bottom, and this controls where the function
tag for a node from the original tree is placed in the extracted trees. For example,
the SBJ function tag (a syntactic tag) in the full tree is placed in the template for
instance #2 (with the [t]-SBJ meaning that it is a “top” function tag), and it is
not present on the template for instance #3, and so the word at index <2> in etree
instance #3 only receives that label from substituting into the NP [t]-SBJ” node.
In contrast, the -LOC and -MNR tags are semantic tags, and so “bottom” tags and
appear in the extracted trees anchored by the head of the constituent the tag appears
with in the original tree.

4 Treebank Search Using Elementary Trees

We carry out the extraction procedure described in the previous section to both
versions, gold and parsed, of the dev section, using the data discussed in Section
2‘12

For the two versions of the dev section, taken together, there are 141499 to-
kens, with 83196 etree instances, which need only 1551 etree templates. After this
extraction process is completed, all of the tokens, etree templates, etree instances,
and derivation trees are stored in a MySQL database for later search. We do not
have space here to show the database schema, but it is organized with appropriate
indexing to allow for very quick access to the etree instances for each sentence,
and to the etree template each one in turn links to.

The search for particular syntactic structures, as represented by the etree tem-
plates, therefore becomes a search for indexed integers (with integers represent-
ing etree instances and etree templates). Searching for these elementary trees is
therefore extremely fast, something we are taking advantage of for separate work
on searching an entire corpus for syntactic structures, aside from the current is-
sue of searching on two sets of trees together. From the perspective of database
organization, the tree extraction can be perhaps be viewed as a type of database
“normalization”, in which duplicate information is placed in a separate table.

Before any queries are processed, the tree decomposition and database cre-
ation, as discussed above, is done. This is only done once, for the two full sets of

in various head-based parsing approaches, or in the earlier TAG-based tree extraction work. However,
most parsing work has not been concerned with function tag recovery during parsing, and no TAG-
based extraction work has included the function tags in the extracted trees.

12The extraction of the parse output requires that function tags be included in the output, as in
either [1, 6]. This is because the function tags are used for the tree decomposition process. However,
it does not currently use empty categories in the parse output, as in [6] and other work, although that
will be incorporated in future work.

trees, and is used for all future query searches.

Currently queries are specified as conditions over elementary trees. We do not
currently utilize the derivation tree in the search as well, to query on how etrees
connect with each other. However, this is very important for future work, as dis-
cussed in Section 6.

Further, the queries can be logically grouped into sets, for cases in which we
want to see how particular etree instances might satisfy one query instead of an-
other. For example, we might want to see if the parser, or the annotators, are
confusing LOC and ADV function tags, or treating a particular token as part of a
three-level idafa instead of a two-level idafa.

We take advantage of the “lexicalized” property of the tree grammar, as dis-
cussed in Section 3, to allow us to construct confusion matrices showing how cor-
responding tokens across two different annotations compare with regard to satis-
faction of the queries of interest. This is possible because we can associate each
token with satisfaction results for various queries based on the etree instance that
the tree token belongs to. Even queries examined on their own, without reference
to other queries, form a 2x2 confusion matrix, in which the query is compared
against the lack of satisfaction of that query. We show examples of these query
results and confusion matrices in the next section.

For a given set of queries, the following sequence occurs:

e The etree templates are searched to determine which match a given query.
It is possible (and likely) that a query will select more than one of the
1551 etree templates. For example, a query specifying the structure (SBAR
WHNP S) will find cases of such SBAR trees regardless of what is below the
S node (intransitive or transitive verb, verbal noun, etc.).

o The etree instances are then searched to determine which take a template that
satisfies a given query.

e These first two steps result in the following situation. Each etree instance
is categorized as satisfying a given query or not. Due to the “lexicalized”
property of the tree grammar, as just discussed, each treebank token is linked
to an etree instance, and so it immediately follows that for any treebank
token, it is easy to determine whether it is in a syntactic context that satisfies
a given query.

e The two sets of trees are gone through in parallel, token by token.'> Each
corresponding token in the two sets of trees is checked for which queries it
satisfies. The query results are stored in confusion matrices as mentioned
above.

13 As noted in footnote 6, there is an issue here with differing tokenizations in the gold and parser
data. More precisely, we are gathering data on the original whitespace-delimited tokens, which
themselves are broken up into multiple tokens for the trees, perhaps differently for the gold and
parsed data. This allows the matching of tokens across the two sets of trees, thus overcoming the
problems with evalb mentioned in footnote 6. We do not show in this paper the two levels of tokens.

gold\ parsed | N | 1 [2| 3 | total

gold\ parsed | N | query 4 | total N 6 |0 131 | 137
N 194 194 query 1 16 |28 0| 8 52
query 4 | 88 677 765 query 2 3 0|1 1 5

88 871 959 query 3 215 2 | 0| 313 | 530

total 234 136 | 1| 453 | 724

Table 1: Confusion matrix showing re-

sults of query 4. N indicates absence of Table 2: Confusion matrix showing re-

satisfaction of query 4. The cell (N, N) is sults of queries 1, 2, and 3.
not included since we are only interested

in cases in which at least one query was

satisfied.

S Data Set and Example Queries

We give four examples of searches that we are currently using. They are specified
as partial tree information, and are matched against the etree templates. The AS
indicates the anchor of an elementary tree that is associated with that query.'*

1 - (NP[b]-LOC AS$) - the anchor projects to a NP-LOC
2 - (NP[b]-DIR AS$) - the anchor projects to a NP-DIR

3 - (NP[b]-ADV AS) - the anchor projects to a NP-ADV

4 - (NP A (NP A (NP AS))) - athree-level idafa

In addition, we consider query 4 by itself, resulting in a 2x2 confusion matrix
for cases in which a three-level idafa was found vs. the absence of a three-level
idafa. Queries 1, 2, and 3 are grouped together in a confusion matrix, along with
absence of satisfaction of query 1, 2, or 3.

Table 1 shows the confusion matrix for query 4, the three-level idafa. The N
row indicates the absence of query 4 in the gold tree, while the N column indicates
the absence of query 4 in the parsed tree. We do not include the cell (N, N) because
those would be cases in which the query under consideration is missing from both
the gold and parsed trees for some token, and so are not relevant for this table.

The cell (4, 4) indicates that there are 677 cases where both sets of trees agreed
on the same three-level idafa. However, there are 88 cases where the gold tree had
a three level idafa and the parsed tree did not, and 194 cases of the inverse. Figure
3 shows an example of an entry from cell (N, 4) in Table 1, in which the token
<10> in the parsed tree is the anchor of a three-level idafa, thus satisfying query 4,
while the corresponding anchor in the gold tree does not. Note that it is a simple

14{ e., if an elementary tree has more than one anchor, we want only one anchor (word) to trigger

that query, so that the elementary tree is not counted twice.

GOLD TREE PARSED TREE

(PP (PREP (PP (PREP
<7>1i,for/to) <7>11)
(NP (NOUN+NSUFF_MASC_PIL_GEN (NP (NOUN
<8>1Aji}+iyna, refugeet[masc.pl.gen.]) <8>1Aji}+iyna)
(NP-LOC (NOUN+CASE_DEF_ACC (NP (NOUN
<9>$amAl+a, north/North+[def.acc.]) <9>$amAl)
(NP (NOUN_PROP+NSUFF_FEM SG+CASE_DEF GEN (NP (NOUN_PROP
<10>gaz~+ap+i,Gaza+[fem.sg.]+[def.gen.]) <10>gaz~+ap)

Figure 3: The token <10>gaz~+ap in the parsed tree is an example of a token that
results in the cell (N, 4) in Table 1, since it is the anchor of a three-level idafa while
the corresponding token in the gold tree is not. At the same time, the token <9> in
the gold tree results in an entry in cell (1,N) in Table 2 since it is the anchor of a
NP-LOC structure, while the corresponding token <9> in the parsed tree is not.

matter in this approach to report on multi-level etree structures that are larger than
just one-level relations in the trees.

Table 2 shows the confusion matrix for queries 1, 2, and 3. For example, the
cell (1,1) indicates that there are 28 cases in which both the gold and parsed trees
had an (NP-LOC A) structure for a token A. Cell (1, 3) indicates that there are 8
cases in which the gold tree satisfied query 1 (NP-LOC) for some token, while the
parser output tree satisfied query 3 (NP-ADV) for that same token.

Of particular interest to us is that cell (1,N) indicates that there are 16 cases in
which the gold tree had a token projecting to NP-LOC while the parsed tree did not
project to LOC, DIR, or ADV. One such case is the same pair of tree fragments in
Figure 3, in which token <9> in the gold tree heads an NP-LOC while this is not the
case in the parsed tree.!’

These examples are of necessity just a sampling of the searches currently being
used. The ability to define conditions on etrees and relate the results to particular
tokens makes it easy to look for properties across the pairs of trees. It is extremely
useful to be able to define queries on meaningful syntactic units, such as the idafas
or, in other queries not shown here, properties of relative clause constructions,
properties of etrees headed by verbs (such as valency), and so on. These types of
searches are harder to do in the earlier work on tree analysis discussed in Section
1, which are limited to reporting on one-level head/dependency relations.

I5This case is also of interest also because it shows that the parser is not taking advantage of
morphological evidence showing that the three-level idafa analysis is wrong. The tight coupling of
words in an idafa triggers various morpological and phonological effects, one of which is that the
“n” in non-final words in the idafa is dropped, and so the suffix “iyna” in token <8> clearly indicates
that the idafa in the parse output must be incorrect.

6 Conclusions and Future Work

We have described a new approach to treebank search that allows queries to be
directly stated, and reports generated, using meaningful units of tree fragments.
Future work will take place in three overlapping directions:

(1) The work has so far focused on Arabic parsed data. This needs to be ex-
tended for IAA analysis (which, again, is basically the same problem), and further-
more, for other languages, in particular English, both for parsing analysis and for
current treebank construction.

(2) As discussed in Section 4, there are some notable potential speed advan-
tages to this approach, and we intend to utilize and test this for the more standard
problem of searching on a complete corpus for various configurations, in addition
to the search on parallel trees as described here.

(3) However, by far the most important aspect of future work is extending the
query definition to allow for searches on how etrees combine in the derivation tree.
This will allow us to quantify various aspects of modifier attachment, always a
concern for both annotation and parsing. Because we are using trees of meaning-
ful syntactic structures as the basic units of search, we will be able to quantify
the results concerning such questions as “how often do the annotators agree on
the core structures, but disagree on the attachment of various modifiers into those
structures?”

While searching in the derivation tree is necessary for fully expressing the
searches we are interested in, it will add a layer of complexity to the search proce-
dure. The worst-case scenario is that requiring arbitrary searches over the deriva-
tion tree will bring up here the usual issues concerning how to search trees in a
database that we have so far avoided in this approach by “normalizing” the cor-
pus by extracting out the etrees. However, we suspect that many of the required
searches will need to examine only very local slices of the derivation tree, namely
just parent/head/sister relations, which are those used to represent modification in
the derivation tree. This should be the case because in the derivation tree, each node
already represents a chunk of syntactic structure, instead of just a a single node. If
this hypothesis holds, and arbitrary hierarchical searching on trees is avoided for
queries, we will be able to search for queries we are interested in, while avoiding
any significant speed penalty.

References

[1] Don Blaheta. Function Tagging. PhD thesis, Brown, 2003.

[2] Tim Buckwalter. Arabic morphological analyzer version 2.0. LDC2004L02,
2004. Linguistic Data Consortium.

[3] John Chen. Towards Efficient Statistical Parsing Using Lexicalized Gram-
matical Information. PhD thesis, University of Delaware, 2001.

[4] David Chiang. Statistical parsing with an automatically extracted tree adjoin-
ing gramar. In Data Oriented Parsing. CSLI, 2003.

[5] Michael Collins. Head-driven statistical models for natural language parsing.
Computational Linguistics, 29:589-637, 2003.

[6] Ryan Gabbard, Seth Kulick, and Mitchell Marcus. Fully parsing the Penn
Treebank. In HLT-NAACL, pages 184191, 2006.

[7] Sumukh Ghodke and Steven Bird. Querying linguistic annotations. In Pro-
ceedings of the Thirteenth Australasian Document Computing Symposium,
pages 69-72, Hobart, Australia, 2008.

[8] Nizar Habash and Owen Rambow. Extracting a Tree Adjoining Grammar
from the Penn Arabic Treebank. In Traitement Automatique du Langage Na-
turel (TALN-04), Fez, Morocco, 2004.

[9] A.K. Joshi and Y. Schabes. Tree-adjoining grammars. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond
Words, pages 69—124. Springer, New York, 1997.

[10] Seth Kulick, Ryan Gabbard, and Mitchell Marcus. Parsing the Arabic Tree-
bank: Analysis and improvements. In Proceedings of TLT 2006. Treebanks
and Linguistic Theories, 2006.

[11] Mohamed Maamouri, Ann Bies, and Seth Kulick. Upgrading and enhancing
the Penn Arabic Treebank: A GALE challenge. In Joseph Olive, editor, in
progress for publication (book describing work in GALE program). 2009.

[12] Jiri Mirovsky. Netgraph - making searching in treebanks easy. In Proceedings
of the Third International Joint Conference on Natural Language Processing,
pages 945-950, Hyderabad, India, 2008.

[13] Beth Randall. Corpus search. http://sourceforge.net/projects/corpussearch/.

[14] B. Roark et al. Sparseval: Evaluation metrics for parsing speech. In Fifth
International Conference on Language Resources and Evaluation, Genoa,
Italy, 2006.

[15] Rushin Shah. The LDC Standard Arabic Morphological Tagger. talk at Lin-
guistic Data Consortium.

[16] Fei Xia. Automatic Grammar Generation From Two Different Perspectives.
PhD thesis, University of Pennsylvania, 2001.

[17] Nianwen Xue. Evaluating the impact of Chinese word segmentation on syn-
tactic parsing, 2009. Book chapter for Global Automatic Language Exploita-
tion.

