
A TAG-derived Database for Treebank Search and Parser Analysis

Seth Kulick and Ann Bies
Linguistic Data Consortium
University of Pennsylvania
3600 Market St., Suite 810

Philadelphia, PA 19104
{skulick,bies}@ldc.upenn.edu

Abstract

Recent work has proposed the use of an ex-
tracted tree grammar as the basis for tree-
bank analysis, in which queries are stated over
the elementary trees, which are small chunks
of syntactic structure. In this work we inte-
grate search over the derivation tree with this
approach in order to analyze differences be-
tween two sets of annotation on the same text,
an important problem for parser analysis and
evaluation of inter-annotator agreement.

1 Introduction

In earlier work (Kulick and Bies, 2009; Kulick and
Bies, 2010; Kulick et al., 2010) we have described
the need for a treebank search capability that com-
pares two sets of trees over the same tokens. Our
motivation is the problem of comparing different
annotations of the same data, such as determin-
ing where gold trees and parser output differ. An-
other such case is that of comparing inter-annotator
agreement files during corpus construction. In both
cases the typical need is to recognize which syntac-
tic structures the two sets of trees are agreeing or
disagreeing on.

For this purpose it would be useful to be able to
state queries in a way that relates to the decisions
that annotators actually make, or that a parser mim-
ics. We refer to this earlier work for arguments that
(parent, head, sister) relations as in e.g. (Collins,
2003) are not sufficient, and that what is needed is
the ability to state queries in terms of small chunks
of syntactic structure.

The solution we take is to use an extracted tree
grammar, inspired by Tree Adjoining Grammar

(Joshi and Schabes, 1997). The “elementary trees”
and the derivation trees of the TAG-like grammar are
put into a MySql database, and become the objects
on which queries can be stated. The “lexicalization”
property of the grammar, in which each elementary
tree is associated with one or more tokens, allows
for the the queries to be carried out in parallel across
the two sets of trees.

We show here how this approach can be used to
analyze two types of errors that occur in parsing the
Arabic Treebank. As part of this analysis, we show
how search over the derivation tree, and not just for
the elementary trees, can be used as part of this anal-
ysis of parallel annotations over the same text.

2 Elementary Tree Extraction

The work described and all our examples are taken
from the Arabic Treebank, part 3, v3.2 (ATB3-v3.2)
(Maamouri et al., 2010).

As discussed above, we are aiming for an analy-
sis of the trees that is directly expressed in terms of
the core syntactic constructions. Towards this end
we utilize ideas from the long line of TAG-based re-
search that aims to identify the smaller trees that are
the “building blocks” of the full trees of that tree-
bank, and that are then used for such purposes as
training parsers or as a basis for machine translation
systems (Chen, 2001; Chiang, 2003; Xia, 2001).
However, as far as we know this approach has not
been utilized for searching within a treebank, until
the current line of work.

As in the earlier TAG work we use head rules to
decompose the full trees and then extract out the
“elementary trees”, which are the small syntactic
chunks. This decomposition of the full tree results

S

VP

PV

tHTmt
crashed
�

I
�
Ò

��
¢

�
m�

��
'

NP-SBJ

NP

NOUN

TA}rp
airplane

�
èQ

K� A

�
£

NP

NOUN

tdryb
training
I. K
P

�
Y

��
K

ADJP

ADJ

Eskryp
military
�
é
��
K
Q

�

�
º�

�
«

PP-LOC

PREP

fiy
in
ú

	
¯
�

NP

...

Figure 1: Sample tree

not just in these elementary trees, but also records
how the elementary trees relate to each other, and
therefore how they can be recombined to form the
original full tree. For our grammar we use a TAG
variant with tree-substitution, sister-adjunction, and
Chomsky-adjunction (Chiang, 2003).

A small example is shown in Figures 1 and 2.1

The full tree is shown in Figure 1, and the extracted
elementary trees2 and derivation tree in Figure 2.
(The ˆ symbol at the node NP[t]-SBJ in tree #1
indicates that it is a substitution node.) The extracted
trees are the four trees numbered #1–#4. These trees
are in effect the nodes in the derivation tree showing
how the four elementary trees connect to each other.

We briefly mention three unusual features of this
extraction, and refer the reader to (Kulick and Bies,
2009) for detail and justification.3

1. The function tags are included in the tree ex-
traction, with the syntactic tags such as SBJ
treated as a top feature value, and semantic
tags such as LOC treated as a bottom feature
value, extending the traditional TAG feature

1We use the Buckwalter Arabic transliteration scheme
http://www.qamus.org/transliteration.htm
for the Arabic.

2We will sometimes use ”etree” as shorthand for ”elemen-
tary tree”.

3See (Habash and Rambow, 2004) for an earlier and differ-
ent approach to extracting a TAG from the ATB. As they point
out, there is no one correct way to extract a TAG.

VP

PV NP[t]-SBJ^

#1

 tHTmt
crashed

S

NP[b]:IDAFATOP

NOUN NP[t]:IDAFACOMP

#2

 TA}rp
airplane

NOUN

 tdryb
training ADJP

ADJ

 Eskryp
military

#3

PP[b]-LOC

PREP NP^

#4

 fiy

S:1.1.2

M:1,r

A:1.1.2,r,1

Figure 2: Elementary Trees and Derivation Tree for the
Tree Decomposition in Figure 1

system (Vijay-Shanker and Joshi, 1988) to han-
dle function tags.

2. Etree #2 consists of two anchors, rather than
splitting up the tree decomposition further.
This is because this is an instance of the idafa
(”construct state”) construction in Arabic, in
which two or more words are grouped tightly
together.

3. During the extraction process, additional infor-
mation is added to the nodes in some cases, as
further attributes for the “top” and “bottom” in-
formation, parallel to the function tag informa-
tion. In this case, the root of etree #2 has the
“bottom” attribute IDAFATOP, meaning that it
is the top of an idafa structure, and the lower NP
has the “top” attribute IDAFACOMP, meaning
that it is the complement within an idafa struc-
ture.4 Such added attributes can be used by the
search specifications, as will be done here.

The derivation tree for this tree decomposition
4At the root node, the IDAFATOP information is in the “bot-

tom” attribute because it is part of the structure from below. The
IDAFACOMP is a “top” attribute because it is a consequence of
being a child of the higher node.

shows how the relations of substitution, sister-
adjunction, and Chomsky-adjunction relate the etree
instances. For example, etree instance #2 substitutes
at address 1.1.25 of etree instances #1, as indicated
by the S:1.1.2 above instance #2. Etree instance
#3 Chomsky-adjoins at the root of etree instance #2,
as indicated by the M:1,r above instance #3. The
M indicates Chomksy-adjunction, the 1 indicates the
root, and the r indicates that it is to the right.6 Etree
instance #4 sister-adjoins to node 1.1.2 in Etree #1,
as indicated by the A:1.1.2,r,1, becoming a sis-
ter of node NP[t]-SBJˆ. The A indicates sister-
adjunction, and the r is again the direction, and the
1 indicates the ordering, in case there was more than
one such sister-adjunction at a node.

It is of course often the case that the same el-
ementary tree structure will be repeated in differ-
ent elementary trees extracted from a corpus. To
make our terminology precise, we call each such
structure an ”etree template”, and a particular in-
stance of that template, together with the ”an-
chors” (tokens) used in that instance of the tem-
plate, is called an ”etree instance”. For example, in
tree #2, the template is (NP[b]:IDAFATOP A1
(NP[t]:IDAFACOMP A2)), where A1 and A2
stand for the anchors, and this particular etree in-
stance has that template and the anchors (NOUN
TA}rp) and (NOUN tryb).

3 Query Processing

We are concerned here with showing the analysis of
parallel sets of annotations on the same text, and as
mentioned in Section 1, we compare gold and parser
output. However, we are interested in exploring dif-
ferences between different parser runs, in which as-
pects of the parser model are changed. Therefore we
use a training/dev/test split7, and work here with the
dev section. We do not include here all the details of
the parser setup, since that is not the focus here,8 but

5The addresses are Gorn addresses, with the root as 1.
6Since we do not store such directional information in the

actual tree adjoining in in the traditional TAG way, by including
the appropriate root and foot node, the directional information
needs to be specified in the derivation tree.

7http://nlp.stanford.edu/software/parser-arabic-data-
splits.shtml. We also include only sentences of length
<= 40.

8We used the Bikel parser, available at
www.cis.upenn.edu/˜dbikel/software.html

we work with two settings. For both “Run 1” and
“Run 2”, the parser is supplied with the gold tags
for each word. For “Run 2 ”, the parser is forced
to use the given tags for every word. For “Run 1”,
the parser can use its own tags, based on the training
data, for words that it has seen in training. We are
interested in exploring some of the consequences of
this difference.

We therefore carry out the extraction procedure
described in the previous section on each of three
versions of trees for the same tokens: (a) the gold
dev section trees, (b) the parser output for Run 1, and
(c) the parser output for Run 2. Each has (the same)
17882 tokens. The gold version has 14370 etree in-
stances using 611 etree templates, Run 1 has 14208
etree instances and 489 etree templates, and Run 2
has 14215 etree instances using 497 etree templates.
This gives some indication of the huge amount of
duplication of structure in a typical treebank repre-
sentation. From the perspective of database organi-
zation, the representation of the etree templates can
be perhaps be viewed as a type of database “normal-
ization”, in which duplicate tree structure informa-
tion is placed in a separate table.

A significant aspect of this decomposition of the
parse output is that the tree decomposition relies
upon the presence of function tags to help deter-
mine the argument status of nodes, and therefore
what should be included in an elementary tree. We
therefore use a modification of Bikel parser as de-
scribed in (Gabbard et al., 2006), so that the output
contains function tags. However, inaccuracy in the
function tag recovery by the parser could certainly
affect the formation of the elementary trees resulting
from Runs 1 and 2. We do not include empty cate-
gories for the parser output, while they are present
in the Gold trees.9 There are 929 etree templates in
total, combining those for the three versions, with
those for Run 1 and Run 2 overlapping almost en-
tirely.

The extracted tokens, etree templates, etree in-
stances, and derivation trees are stored in a MySQL
database for later search. The derivation tree is im-
plemented with a simple ”adjacency list” represen-
tation, as is often done in database representations of

9On a brief inspection, this is likely the reason for the greater
number of templates used for the gold version of the data, since
the templates then include the empty categories as well.

Lexical restrictions:
L1: text="Ean"

Etree queries:
E1) [NP{b:IDAFATOP} (A1,)]

[NP{t:IDAFACOMP} (A2,)]
E2) [NP{b:IDAFATOP} (A1,)]

[NP{t:IDAFAMID} (A2,)]
[NP{t:IDAFACOMP} (A2,)]

...
E6 [VP (A1,PP[t]-CLRˆ{dta:1})]
E7 [PP (A1{lex:L1},)]

Dtree queries:
two-level idafa (NP A1 (NP A2))
D1) E1
three-level idafa
(NP A1 (NP A2 (NP A3)))
D2) E2
four-level idafa
(NP A1 (NP A2 (NP A3 (NP A4))))
D3) E3
five-level idafa
D4) E4
six-level idafa
D5) E5
VP with PP substituting into PP-CLR
D6) (sub{dta:1} E6 E7)

Figure 3: Examples of Etree and Dtree queries

hierarchical structure. We do not have space here to
show the database schema, but it is organized with
appropriate indexing so that a full tree is represented
by a derivation tree, with integers pointing to the
etree instance, which in turn use integers to repre-
sent the etree template in that etree instance and also
point to the anchors of that etree instance.

This tree extraction and database setup only needs
to be done once, as a preliminary step, for all of
the queries on the corpus, as stored in the database.
We now illustrate how queries can be specified, and
describe the algorithm used for searching on the
database with the extracted tree grammar.

3.1 Query Specification

Queries are specified as ”Etree queries” and ”Dtree
queries”. Sample queries are shown in Figure 3.
Etree queries determine a set of etree instances, by
specifying conditions on the structure of a etree in-
stance (and therefore on the etree template that the
etree instance uses), and, optionally, lexical con-
straints on the anchor(s) of that etree instance. The

Dtree queries specify a relationship in the deriva-
tion tree of etree instances that satisfy certain etree
queries.

Each Etree query is in the form of a list
of pairs, where each pair is (node-label,
children-of-node-label), where the node
labels identify nodes on the spine from the root
down. We forgo a rigorous definition here of the
query language here in favor of focusing on the ex-
ample queries.

Etee query E1 specifies that an etree instance
is a match for E1 if it has a path with a
NP{b:IDAFATOP} node and then another node
NP{t:IDAFACOMP}. Each such node further has
a child that is an anchor, A1 for the first, and A2 for
the second. There are no lexical restrictions speci-
fied for these anchors, so any etree instance with an
etree template that satisfies that condition satisfies
E1. Etree query E2 is similar except that it matches
a three-level idafa, using the attribute IDAFAMID
to do so. By repeating the number of nodes in the
spine with IDAFAMID, idafas of various sizes can
be found, as in Etree queries E3-E5, which we leave
out.

Etree query E6 specifies that an etree instance is
a match for E6 if it has a VP node, with children
A1 and substitution node PP-CLRˆ. Etree query E7
simply finds all templates with node PP, for which
the anchor satisfies lexical restrction L1, which is
specified to mean that its text is Ean.

Some Dtree queries, such as D1−D5, are as sim-
ple as possible, corresponding to a single node in
the derivation tree, and are identical to a specified
Etree query. Here, D1−D5 just return the results
of Etree queries E1−E5, respectively. Other Dtree
queries involve two nodes in the derivation, such as
D6, which specifies that is is selecting pairs of Etree
instances, one satisfying Etree query E6, and the
other E7, with the latter substituting into the former.
This substitution has to be at a certain location in
the parent etree instance, and dta:1 (for “deriva-
tion tree address’) is this location. It arises from the
search of etree templates for the parent query, here
E6, in a manner described in the following Step 1.

3.2 Step 1: Etree Template Search
The etree templates are searched to determine which
match a given etree query. For the current data, all

929 etree templates are searched to determine which
match queries E1–E7. It’s currently implemented
with simple Python code for representing the tem-
plates as a small tree structure. While this search is
done outside of the database representation, the re-
sulting information on which templates match which
queries is stored in the database.10

This step does not search for any lexical infor-
mation, such as lex:L1 in E7. That is because
this step is simply searching the etree templates,
not the etree instances, which are the objects that
contain both the etree template and lexical anchor
information. So this step is going through each
template, without examining any anchors, to deter-
mine which have the appropriate structure to match
a query. However, in order to prepare for the later
steps of finding etree instances, we store in another
table the information that for a (template,query) to
match it must be the case that an anchor at a par-
ticular address in that template satisfies a particular
lexical restriction, or that a particular address in that
template will be used in a derivation tree search.

This additional information is not necessarily the
same for different templates that otherwise match a
query. For example, the two templates

(1) (S (VP A1 NP[t]-SBJˆ PP[t]-CLRˆ))
(2) (SBAR WHNPˆ

(S (VP A1 (NP[t]-SBJ (-NONE- *T*))
PP[t]-CLRˆ)))

both match query E6, but for (1) the stored ad-
dress dta:1 is 1.1.3, while for (2) the stored ad-
dress is 1.2.1.3, the address of PP[t]-CLRˆ in
each template. Likewise, the stored information
specifies that an etree instance with the template
(PP A1 NPˆ) matches the query E7 if the anchor
has the text Ean.

This step in effect produces specialized informa-
tion for the given template as to what additional re-
strictions apply for that (query,template) pair to suc-
ceed as a match, in each etree instance that uses that
etree template.

To summarize, this step finds all (Etree query,
etree template) matches, and for each case stores the
additional lexical restriction or dta information for

10While there are several ways to optimize this tree matching,
we have not made that a priority since the search space is so
small.

that pair. This information is then used in the fol-
lowing steps to find the etree instances that match
a given Etree query Eq, by also checking the lexi-
cal restriction, if any, for an etree instance that has a
template that is in the pair (Eq, template), and by us-
ing in a derivation tree search the dta information
for that pair.

3.3 Step 2: Dtree Search and Etree Instances

For each Dtree query, it first finds all etree instances
that satisfy the etree query (call it Eroot here) con-
tained in the root of the Dtree query. This is a two-
part process, by which it first finds etree instances
such that the (Eroot, etree template) is a match for
the instance’s etree template, which is the informa-
tion found in Step 1. It then filters this list by check-
ing the lexical restriction, if any, for the anchor at
the appropriate address in the etree instance, using
the information stored from Step 1.

For single-node Dtree queries, such as D1−D5
this is the end of the processing. For two-node Dtree
queries, such as D6, it descends down the deriva-
tion tree. This is similar to the two-part process just
described, although the first step is more complex.
For the Etree query specified by the child node (call
it Echild here), it finds all etree instances such that
(Echild, etree template) is a match for the instance’s
etree template, and, in addition, that the etree in-
stance is a child in the derivation tree for a parent
that was found to satisfy Eroot, and that the address
in the derivation tree is the same as the address dta
that was identified during Step 1 for the template of
the parent etree instance. Note that the address is lo-
cated on the parent tree during Step 1, but appears in
the derivation tree on the child node.

4 Search over Pairs of Trees

As discussed in the introduction, one of the motiva-
tions for this work is to more easily compare two sets
of trees for structures of interest, arising from either
two annotators or gold and parser output. We con-
struct confusion matrices showing how correspond-
ing tokens across two different annotations compare
with regard to satisfaction of the queries of interest.
We do this by associating each token with satisfac-
tion results for queries based on the etree instance
that the tree token belongs to (this is related to the

Gold:
(PP-PRP (PREP <17>li) for/to

(NP (NOUN+CASE_DEF_GEN <18>waDoE+i) laying down
(NP

(NP (NOUN+CASE_INDEF_GEN <19><iTAr+K) framework
(ADJ+CASE_INDEF_GEN <20>EAm˜+K) general

(SBAR

Run1: Run2:
(PP-PRP (PREP <17>li) (PP-PRP (PREP <17>li)

(NP (NP
(NP (NOUN <18>waDoE+i) (NP (NOUN <18>waDoE+i)

(NP (NOUN <19><iTAr+K) (NP
(NP (NOUN <20>EAm˜+K) (NP (NOUN <19><iTAr+K)

(SBAR (ADJ <20>EAm˜+K)
... (SBAR

Figure 4: Token <18> is an example entry from cell (D1, D2) in Table 1, showing that the gold tree satisfies query
D1 (a two-level idafa) while the Run 1 parse tree satisfies, incorrectly, query D2 (a three-level idafa). Token <18> in
Run 2 correctly satisfies query D2.

”lexicalization” property of TAG). To prevent the
same query from being counted twice, in case it is
satisfied by an etree instance with more than one an-
chor, we associate just one ”distinguished anchor” as
the token that counts as the satisfying that instance
of the query.11 Similarly, for a Dtree query such as
D6 that is satisfied by two etree instances together,
each one of which would have its own distinguished
anchor, we use just the anchor for the child etree
instance. For D6, this means that the token that is
associated with the satisfaction of the query is the
preposition in the child elementary tree.

As discussed in Section 3, we have three sets of
trees to compare over the same data, (a) the gold, (b)
Run 1, and (c) Run 2. We constructed confusion ma-
trices measuring (a) against (b), (a) against (c), and
(b) and against (c). The latter is particularly helpful
of course when identifying differences between the
two parser runs. However, due to space reasons we
only present here sample confusion matrices for (a)
the gold vs. (b) Run 1, although our examples also
show the corresponding tree from Run 2.

It is often the case that some queries are logi-
cally grouped together in separate confusion matri-
ces. For the queries in Figure 3, we are interested in
comparing the idafa queries (D1−D5) against each

11This is just the anchor that is the head.

gld\Rn1 N D1 D2 D3 D4 D5 Total
N 0 66 30 6 0 0 102
D1 81 1389 13 3 1 0 1487
D2 21 4 285 1 1 0 312
D3 1 0 1 42 0 0 44
D4 0 0 0 0 5 0 5
D5 0 0 0 0 0 1 1

Total 103 1459 329 52 7 1 1951

Table 1: Confusion matrix showing results of queries D1-
D5 for Gold trees and Run 1

other, with the PP-CLR case (D6) in isolation.
Table 1 shows the confusion matrix for queries

D1−D5 for the gold vs. Run 1. The row N contains
cases in which the token for the gold tree did not sat-
isfy any of query D1−D5, and likewise the column
N contains cases in which the token for the parse out-
put did not satisfy any of queries D1−D5. The cell
(N,N) would consist of all tokens which do not sat-
isfy any of queries D1−D5 for either the gold or the
parse, and so are irrelevant and not included.

For example, the cell (1, 2) consists of cases
in which the token in the gold tree is a distin-
guished anchor for an elementary tree that satifies
query D1, while the corresponding token in the parse
output is a distinguished anchor for an elementary
tree that satisfies query D2. An example of an en-
try from this cell is shown in Figure 4. The token

Gold:
(S

(VP (PV+PVSUFF_SUBJ:3MS <13>Eab˜ar+a) express + he
(NP-SBJ (DET+NOUN+CASE_DEF_NOM <14>Al+|bA’+u) the fathers/ancestors
(PP-CLR (PREP <15>Ean) from/about/of

(NP
(NP (NOUN+CASE_DEF_GEN <16>qalaq+i) unrest/concern/apprehension

(NP (POSS_PRON_3MP <17>him) their
(PP (PREP <18>min) from

(NP ...

Run1: Run2:
(S (S

(VP (PV <13>Eab˜ar+a) (VP (PV <13>Eab˜ar+a)
(NP-SBJ (NP-SBJ (DET+NOUN <14>Al+|bA’+u)

(NP (PP-CLR (PREP <15>Ean)
(NP (DET+NOUN <14>Al+|bA’+u) (NP (NOUN <16>qalaq+i)
(PP (PREP <15>Ean) (NP (POSS_PRON <17>him)

(NP (PP (PREP <18>min)
(NP (NOUN <16>qalaq+ (NP)

(NP (POSS_PRON <17>him)
(PP (PREP <18>min)

(NP ...)

Figure 5: Token <15> is an example entry from cell (D6,N) in Table 2, showing that the gold tree satisfies query D6
(a verbal structure with a PP-CLR argument that is headed by Ean), while the Run 1 parse tree fails to satisfy this.
Token <15> in the Run 2 parse does correctly satisfy query D6.

<18>waDoE+i satisfies query D1 in the gold tree
because it is the distinguished anchor for the two-
level idafa structure consisting of tokens <18> and
<19>:
(NP (NOUN+CASE_DEF_GEN <18>waDoE+i)

(NP (NOUN+CASE_INDEF_GEN <19><iTAr+K)))

The modifier at <20> does not interfere with this
identification of the two-level idafa structure, since it
is a modifier and therefore a separate etree instance
in the derivation tree.

However, token <18> in the Run 1 output is the
distinguished anchor for a 3-level idafa, consisting
of the tokens at <18>, <19>, <20>. Note that
these identifications are made separately from the in-
correct attachment level of the SBAR (at <19> in
the gold tree, at <18> in Run 1), which is a sep-
arate issue from the idafa complexity, which is of
concern in this query. One can see here the effect of
the parser choosing the wrong tag for token <20>, a
NOUN instead of ADJ, which causes it to mistakenly
build an extra level for the idafa structure. Figure 4
also shows the corresponding part of the parse out-
put for Run 2 (in which the parser is forced to use the
given tags), which is correct. Therefore if we also

gold\Run 1 N D6 Total
N 0 152 152
D6 76 258 334

Total 76 410 486

Table 2: Confusion matrix showing results of query D6
for Gold trees and Run 1

showed the confusion matrix for gold/Run 2, token
<18> would be an entry in cell (D1,D1). Also, in
a confusion matrix for Run1/Run2 it would appear
in cell (D2,D1). (This is analogous to comparing
annotations by two different anotators.)

Table 2 shows the confusion matrix for Dtree
query D6, which simply scores the satisfaction of
D6 compared with a lack of satisfaction. An exam-
ple entry from cell (D6,N) is shown in Figure 5,
in which token <15>Ean in the gold tree is the dis-
tinguished anchor for the child etree instance that
satisfies query D6, while the corresponding token
<15>Ean in Run 1 does not. For Run 2, token
<15> does satisfy query D6, although the attach-
ment of the PP headed by <18>min is incorrect, a
separate issue.

5 Future Work

Our immediate concern for future work is to use
the approach described for inter-annotator agree-
ment and work closely with the ATB team to ensure
that the queries necessary for interannotator compar-
isons can be constructed in this framework and inte-
grated into the quality-control process. We expect
that this will involve further specification of how
queries select etree templates (Step 1), in interest-
ing ways that can take advantage of the localized
search space, such as searching for valency of verbs.
We also aim to provide information on where two
annotators agree on the core structure, but disagree
on attachment of modifiers to that structure, a major
problem for corpus annotation consistency.

However, there are many topics that need to be ex-
plored within this approach. We conclude by men-
tioning two.
(1) We are not using classic TAG adjunction, and
thus cannot handle any truly (i.e., not auxiliaries)
long-distance dependencies. Related, we are not
properly handling coindexation in our extraction.
The consequences of this need to be explored, with
particular attention in this context to extraction from
within an idafa construction, which is similar to the
extraction-from-NP problem for TAG in English.
(2) We are also particularly interested in the rela-
tion between query speed and locality on the deriva-
tion tree. In general, while searching for etree in-
stances is very efficient, complex searches over the
derivation tree will be less so. However, our hope,
and expectation, is that the majority of real-life dtree
queries will be local (parent,child,sister) searches on
the derivation tree, since each node of the derivation
tree already encodes small chunks of structure. We
plan to evaluate the speed of this system, in com-
parison to systems such as (Ghodke and Bird, 2008)
and Corpus Search12.

Acknowledgements

We thank David Graff, Aravind Joshi, Anthony
Kroch, Mitch Marcus, and Mohamed Maamouri for
useful discussions. This work was supported in
part by the Defense Advanced Research Projects
Agency, GALE Program Grant No. HR0011-06-
1-0003 (both authors) and by the GALE program,

12http://corpussearch.sourceforge.net.

DARPA/CMO Contract No. HR0011-06-C-0022
(first author). The content of this paper does not
necessarily reflect the position or the policy of the
Government, and no official endorsement should be
inferred.

References
John Chen. 2001. Towards Efficient Statistical Parsing

Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

David Chiang. 2003. Statistical parsing with an
automatically extracted tree adjoining gramar. In
Data Oriented Parsing. CSLI. http://www.isi.edu/˜
chiang/papers/chiang-dop.pdf.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29:589–637.

Ryan Gabbard, Seth Kulick, and Mitchell Marcus. 2006.
Fully parsing the Penn Treebank. In HLT-NAACL,
pages 184–191.

Sumukh Ghodke and Steven Bird. 2008. Querying lin-
guistic annotations. In Proceedings of the Thirteenth
Australasian Document Computing Symposium.

Nizar Habash and Owen Rambow. 2004. Extracting a
Tree Adjoining Grammar from the Penn Arabic Tree-
bank. In Traitement Automatique du Langage Naturel
(TALN-04), Fez, Morocco.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3: Beyond
Words, pages 69–124. Springer, New York.

Seth Kulick and Ann Bies. 2009. Treebank analysis and
search using an extracted tree grammar. In Proceed-
ings of The Eigth International Workshiop on Tree-
banks and Linguistic Theories.

Seth Kulick and Ann Bies. 2010. A treebank query
system based on an extracted tree grammar. In HLT-
NAACL (short paper).

Seth Kulick, Ann Bies, and Mohammed Maamouri.
2010. A quantitative analysis of syntactic construc-
tions in the Arabic Treebank. Presentation at GURT
2010 (Georgetown University Roundtable).

Mohamed Maamouri, Ann Bies, Seth Kulick, Son-
dos Krouna, Fatma Gaddeche, and Wajdi Zaghouani.
2010. Arabic treebank part 3 - v3.2. Linguistic Data
Consortium LDC2010T08, April.

K. Vijay-Shanker and A. K. Joshi. 1988. Feature struc-
tures based tree adjoining grammars. In COLING.

Fei Xia. 2001. Automatic Grammar Generation From
Two Different Perspectives. Ph.D. thesis, University
of Pennsylvania.

