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Abstract 

A central problem in research on auto-
matic proficiency scoring is to differenti-
ate the variability between and within 
groups of standard and non-standard 
speakers. Along with the effort to im-
prove the robustness of techniques and 
models, we can also select test sentences 
that are more reliable for measuring the 
between-group variability. This study 
demonstrated that the performance of an 
automatic scoring system could be signif-
icantly improved by excluding “bad” sen-
tences from the scoring procedure. The 
experiments on a dataset of Putonghua 
Shuiping Ceshi (Mandarin proficiency 
test) showed that, compared to all availa-
ble sentences, using only best-performed 
sentences improved the speaker-level 
correlation between human and automat-
ic scores from r = .640 to r = .824. 

1 Introduction 

Automatic scoring of spoken language proficien-
cy has been widely applied in language tests and 
computer assisted language learning (CALL) 
(Wang et al., 2006; Zechner et al., 2009; Streeter 
et al., 2011). A central problem in this research 
area is to differentiate the variability between 
and within groups of standard and non-standard 
speakers. One way to tackle the problem is, as 
done in most previous studies, to improve the 
robustness and reliability of techniques and mod-
els. There is also another way to look at the prob-
lem: not every sentence is equally good for re-
vealing a speaker’s language proficiency. The 
purpose of this study is to demonstrate that, giv-
en an automatic scoring technique, we can signif-
icantly improve the performance of the technique 
by selecting well-performed sentences (with re-
spect to the given technique) as input for scoring.  

Most of the automatic scoring systems rely on 
automatic speech recognition (ASR). The com-
mon practice is to build HMM-based acoustic 
models using a large amount of “standard” 
speech data. To assess an utterance, pronuncia-
tion scores such as log likelihood scores and pos-
terior probabilities are calculated by performing 
speech recognition (or forced alignment if the 
sentence is known) to the utterance based on the 
pre-trained acoustic models (Franco et al., 1997; 
Neumeyer et al., 2000; Witt and Young, 2000; 
Yan and Gong 2011; Hu et al., 2015). Prosody 
scores, e.g., duration, F0, and pauses, have also 
been shown important (Cucchiarini et al., 2000; 
Nava et al., 2009). These individual scores are 
combined with statistical models such as linear 
regression, SVM, and neural network to produce 
an overall score for the test utterance (Franco et 
al., 2000; Ge et al., 2009). 

The performance of model-based automatic 
scoring systems much depends on the amount 
and quality of the training data. For the purpose 
of this study, we adopted a simple, comparison-
based approach. This approach is to measure the 
goodness of a test utterance by directly compar-
ing it to a standard version of the same sentence 
and calculating the distance between the two 
(Yamashita et al., 2005; Lee and Glass, 2013). 

2 Data 

We used a dataset of Putonghua Shuiping Ceshi 
(PSC) from Beijing Normal University. PSC is 
the national standard Mandarin proficiency test 
in China, which is taken by several million peo-
ple each year. The test consists of four parts: The 
first two parts are to read 100 monosyllabic and 
50 disyllabic words; the third part is to read an 
article of 300 characters, randomly selected from 
a pool of 60 articles; and the last part is to speak 
freely on a given topic. The four parts are graded 
separately with a numeric score, and the total 
score (out of 100 points) is converted to a cate-
gorical proficiency level. 



Our dataset consists of recordings of ~800 
college students at Beijing Normal University 
who took the PSC test in 2011 and the grades 
they received on the test. We only used the part 
of article reading in this study. The students who 
read an article being selected for less than 9 other 
students (i.e., the total number of students read-
ing that article is less than 10) were excluded. 
The final dataset contains 630 speakers reading 
42 articles. Each student was graded by two ex-
aminers. The distribution of the examiners’ 
scores on this part (out of 30 points, averaged by 
two examiners’ scores) is shown in Figure 1. The 
correlation between the two examiners’ scores on 
this part is r = 0.819. 

As a demonstration, two professional voice 
talents have recorded the 60 articles in PSC (one 
male and one female, each read 30 articles). We 
used their spoken articles as a reference standard 
to which the students’ were compared. 
 

 
Fig. 1. Distribution of human scores in the dataset. 

3 Method 

Using a state-of-the-art Mandarin forced aligner 
(Yuan et al., 2014), we extracted utterances (de-
limited by a punctuation mark in the text) from 
the spoken articles and also obtained phonetic 
boundaries in the utterances. All utterances from 
a speaker share the same proficiency score, 
which is the average of the two examiners’ 
scores the speaker received on the test.  

In the dataset, every sentence has at least 10 
utterance versions, each from a different speaker, 
plus one standard version. The goodness of a 
sentence to be used for automatic scoring is 
measured by the correlation between the distanc-
es of the students’ utterances from the standard 
version and the utterances’ proficiency scores, as 
shown in Figure 2. We expect negative correla-
tions for “good” sentences: a greater difference 
from the standard version should result in a low-
er proficiency score.  

 
Fig. 2. Paradigm for measuring sentence goodness. 
 
The distance between an utterance and its 

standard version was calculated, respectively, on 
three acoustic dimensions: duration, F0, and 
spectrum. For each of the distance measures, an 
experiment was conducted using the top 10%, 
20%, …, 100% sentences to obtain a distance 
score for every speaker, i.e., the average distance 
of all utterances of the speaker. The correlation 
between the speakers’ distance scores and their 
human-graded proficiency scores are reported to 
show the effect of sentence selection. 

Finally, we combined the three distance 
scores based on duration, F0, and spectrum, plus 
a statistic of pauses, to build an automatic scor-
ing system, and compared the performance of the 
system between using all available sentences and 
using best-performed sentences only. 

4 Experiments and results 

4.1 Sentence selection based on duration 

The distance on duration between a test utterance 
and its standard version was calculated from the 
root mean square difference between paired 
segments (syllables, phones, or words) in the 
utterances, as shown in (1). Segment durations 
were derived from forced aligned boundaries.  
 

Ddur =
(dtest, i − dref , i)2

i=1

n
∑

n
 (1) 

 
where dtest,i is the duration of the ith segment in 
the test utterance, dref,i is the duration of the ith 
segment in the standard utterance, and n is the 
total number of segments in an utterance.  

To remove the effect of speaking rate on the 
duration distance, the segment durations in the 
test utterance were normalized in a way that the 



total duration of the test utterance (excluding 
pauses) is the same as that of the standard one, as 
shown in (Norm 1.1): 

 

dtest, i = dtest, i *
dref , k

k=1

n
∑

dtest, k
k=1

n
∑

 (Norm 1.1) 

 
Figure 3 shows the correlation (-1*r) between 

the speakers’ duration distance scores and their 
proficiency scores when using all sentences, top 
90%, top 80%, …, and top 10% sentences (as 
described in Section 3). We can see that the cor-
relation increases when excluding more “bad” 
sentences from being used for calculating the 
duration distance scores. With respect to the per-
formance of different types of segments, sylla-
bles and words are better than phones. 

 
Fig. 3. Duration distance: different types of segments. 
 

Another way to normalize the segment dura-
tion is to transform the durations to Z-scores per 
spoken article, as shown in (Norm 1.2).  
 

dtest, i = dtest, i −µtest, article

σ test, article

dref , i = dref , i −µref , article

σ ref , article

    (Norm 1.2) 

 
where µ is the mean of the durations of all seg-
ments in the spoken article; σ is the standard de-
viation of the durations.  

Figure 4 compares the performance of the two 
normalization methods (Norm 1.1 and Norm 1.2), 
as well as the performance of using unnormal-
ized durations (Raw). Syllable durations were 
used for the comparison. From Figure 4, we can 
see that the normalization using z-scores per arti-

cle (Norm 1.2) outperforms the normalization 
based on per utterance pair (Norm 1.1). Both 
normalizations significantly improved the corre-
lation, compared to using unnormalized dura-
tions.  

 
Fig. 4. Duration distance: different normalizations. 

 

4.2 Sentence selection based on F0 

The F0 contours of the utterances were extracted 
using esps/get_f0 with a 10 ms frame rate. The 
contours were linearly interpolated to be contin-
uous over the unvoiced segments, and smoothed 
by passing them (both forward and reverse to 
avoid phase distortion, filtfilt) through a Butter-
worth low-pass filter with normalized cutoff fre-
quency at 0.1.  

The distance on F0 between a test utterance 
and its standard version was calculated from the 
root mean square difference between F0s in 
paired syllables. Because the number of F0s in a 
syllable is determined by the syllable duration, 
we normalized the number of F0s in each pair of 
syllables with Python spline interpolation 
(scipy.interpolate.UnivariateSpline, smoothing 
factor = 0.001), for which the number of F0s in 
the standard syllable was used as the normalized 
number. After the normalization, the distance 
was calculated using all F0s in an utterance. 

The values of F0s were also normalized to re-
move the effects of pitch range (e.g., female is 
higher than male). Z-scores were used for the 
normalization, calculated both per utterance 
(Norm 2.1) and per article (Norm 2.2). 
    Figure 5 shows the correlation (-1*r) between 
the speakers’ F0 distance scores and their profi-
ciency scores for the two normalizations, (Norm 
2.1) and (Norm 2.2). We can see that the correla-
tion improves when excluding more “bad” sen-
tences, which is the same as the result on dura-



tion. With regard to the two normalization meth-
ods, the per-utterance normalization (Norm 2.1) 
outperforms the per-article normalization (Norm 
2.2).  

 
Fig. 5. F0 distance: different normalizations. 

 

4.3 Sentence selection based on spectrum 

Dynamic Time Warping (DTW) was used to cal-
culate the spectral distance between a test utter-
ance and its standard version. The feature vector 
consists of the standard 39 PLP coefficients, of 
which the 13 static ones were zero-meaned per 
utterance. As shown in Figure 6, the correlation 
increases when excluding more “bad” sentences, 
which is the same as the results on both duration 
and F0.  

 
Fig. 6. The performance of spectral distance.  

 

4.4 Combining distance scores 

In this section, we investigate the combination of 
different distance scores. A statistic of pause was 
also included, which is the average number of 
pauses per utterance for a speaker. A SVM re-

gression model was trained to predict human 
graded scores from the calculated distance scores 
at the speaker level. We employed 5-fold cross 
validation to separate training and test data. The 
correlations between model-predicted scores and 
human scores on the test data are reported in Ta-
ble 1, for both using all available sentences and 
using only the best-performed sentences, deter-
mined by the experiments above. 

  
Distance scores 
used 

All sen-
tences 

Best sen-
tences 

D .495 .747 
F0 .173 .562 
S .296 .514 
D + F0 .526 .786 
D + F0 + S .566 .804 
D + F0 + S + P  .640 .824 
D: syllable duration, normalized per article;  
F0: normalized per utterance; S: spectrum; P: pauses 

Table 1: Speaker-level correlations between SVM-
predicted and human scores. 
 

From Table 1 we can see that compared to us-
ing all available sentences, using only best-
performed sentences significantly improved the 
performance. When all the three distance scores 
as well as the pause statistic are combined, the 
correlation increased from .640 to .824, which is 
comparable to the correlation (r = .819) between 
the two examiners’ scores. We should note that, 
however, the human scores used in the experi-
ments are the averages of the two examiners’ 
scores, and that although training and test data 
were separated in building SVM models for 
score combination, all data have been used to 
determine best-preformed sentences. 

5 Conclusion 

We proposed a method to select well-performed 
sentences for automatic scoring of spoken lan-
guage proficiency. Our experiments demonstrat-
ed that the speaker-level correlation between 
human and machine scores could be significantly 
improved when excluding “bad” sentences from 
automatic scoring. Continuing research is needed 
to understand the linguistic factors that determine 
the goodness of a sentence for automatic profi-
ciency scoring, and to understand the speech 
characteristics that differentiate the variability 
between and within groups of standard and non-
standard speakers. 
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