Sociolinguistics and Human Language Technologies

Or why we all need large data sets, automatic tools and sharing!
Thesis

• LDC and others collect LARGE data sets to drive speech technology research (LID, ASR, DID, etc)

• LARGE =
 – Hundred/Thousands of hours of data per language/dialect
 – Hundreds/Thousands of speakers
 – E.g. mixer, fisher, HUB4-5, etc

• Many of the technologies that have been developed could support dialect/variation research!
 – Analysis of large data (word usage, pronunciation, etc.)
 – Measurement of speaker/dialect variability (intra and inter)
 – Measurement of channel affects
Case 1

British English vs. American English

- WSJ (US English): 200+ hours of read speech
- WSJ-CAM0 (British): 90+ hours of read speech
- 200+ speakers
- Use ASR techniques to learn pronunciation models

<table>
<thead>
<tr>
<th>Literature</th>
<th>Proposed System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule</td>
<td>Learned Rule</td>
</tr>
<tr>
<td>[ae] -> [aa] / _ [+fric, -voiced] (trap-bath split)</td>
<td>[ae] -> [aa] / _ [+fric, -voiced, +front]</td>
</tr>
<tr>
<td></td>
<td>[ae] -> [aa] / [-voiced]_ [+fric, -voiced, -front]</td>
</tr>
<tr>
<td></td>
<td>[er] -> [ah] / l _ [+affric]</td>
</tr>
</tbody>
</table>

We rediscover known rules AND automatically measured prevalence.
Case 2

AAVE/non-AAVE variability

- StoryCorps: oral history collect of AAVE/non-AAVE talkers
- Simultaneous collection in 15 US cities for NPR
- 300+ speakers, 400+ hours / dialect
- Automatically identify and retrieve instances of AAVE specific transformations (21 from Wolfram 2005)
Mining data for analysis

Using the model to explore your corpus

Learned rules: uw-[l]: uw-l

Words: Teachers are real cool
This is just the beginning

With more data we will be able to:

1. Characterize in-dialect speaker variability
2. Measure acoustic variability that is too subtle for categorical labeling (see [Shen 09] and [Chen/Shen 11])
3. Learn rare transformations that are difficult to observe in small data sets. [Chen 10] proposed 700+ AAVE-specific pronunciation transforms
4. Speed data analysis: find regions of dialectal difference using automatic methods