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Abstract
We investigate a way to partially automate
corpus annotation for named entity recogni-
tion, by requiring only binary decisions from
an annotator. Our approach is based on a lin-
ear sequence model trained using a k-best
MIRA learning algorithm. We ask an an-
notator to decide whether each mention pro-
duced by a high recall tagger is a true men-
tion or a false positive. We conclude that our
approach can reduce the effort of extending
a seed training corpus by up to 58%.

1 Introduction

Semi-automated text annotation has been the subject
of several previous studies. Typically, a human an-
notator corrects the output of an automatic system.

The idea behind our approach is to start annota-
tion manually and to partially automate the process
in the later stages. We assume that some data has
already been manually tagged and use it to train a
tagger specifically for high recall. We then run this
tagger on the rest of our corpus and ask an annotator
to filter the list of suggested gene names.

The rest of this paper is organized as follows. Sec-
tion 2 describes the model and learning algorithm.
Section 3 relates our approach to previous work.
Section 4 describes our experiments and Section 5
concludes the paper.

2 Methods

Throughout this work, we use a linear sequence
model. This class of models includes popular tag-
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ging models for named entities such as conditional
random fields, maximum entropy Markov models
and max-margin Markov networks. Linear sequence
models score possible tag sequences for a given in-
put as the dot product between a learned weight vec-
tor and a feature vector derived from the input and
proposed tas sequence. Linear sequence models dif-
fer principally on how the weight vector is learned.
Our experiments use the MIRA algorithm (Cram-
mer et al., 2006; McDonald et al., 2005) to learn
the weight vector.

2.1 Notation

In what follows, x denotes the generic input sen-
tence, Y (x) the set of possible labelings of x, and
Y +(x) the set of correct labelings of x. There is
also a distinguished “gold” labeling y(x) ∈ Y +(x).
For each pair of a sentence x and labeling y ∈
Y (x), we compute a vector-valued feature represen-
tation f(x, y). Given a weight vector w, the score
w · f(x, y) ranks possible labelings of x, and we de-
note by Yk,w(x) the set of k top scoring labelings for
x.

We use the standard B,I,O encoding for named
entities (Ramshaw and Marcus, 1995). Thus Y (x)
for x of length n is the set of all sequences of length
n matching the regular expression (O|(BI∗))∗. In a
linear sequence model, for suitable feature functions
f , Yk,w(x) can be computed efficiently with Viterbi
decoding.

2.2 k-best MIRA and Loss Functions

The learning portion of our method finds a weight
vector w that scores the correct labelings of the test



data higher than incorrect labelings. We used a k-
best version of the MIRA algorithm (Crammer et
al., 2006; McDonald et al., 2005). This is an online
learning algorithm that starts with a zero weight vec-
tor and for each training sentence makes the small-
est possible update that would score the correct la-
bel higher than the old top k labels. That is, for each
training sentence x we update the weight vector w
according to the rule:

wnew = arg minw ‖w − wold‖
s. t. w · f(x, y(x)) − w · f(x, y) ≥ L(Y +(x), y)

∀y ∈ Yk,wold
(x)

where L(Y +(x), y) is the loss, which measures the
errors in labeling y relative to the set of correct la-
belings Y +(x).

An advantage of the MIRA algorithm (over many
other learning algorithms such as conditional ran-
dom fields) is that it allows the use of arbitrary loss
functions. For our experiments, the loss of a label-
ing is a weighted combination of the number of false
positive mentions and the number of false negative
mentions in that labeling.

2.3 Semi-Automated Tagging

For our semi-automated annotation experiments, we
imagine the following scenario: We have already an-
notated half of our training corpus and want to anno-
tate the remaining half. The goal is to save annotator
effort by using a semi-automated approach instead
of annotating the rest entirely manually.

In particular we investigate the following method:
train a high-recall named entity tagger on the anno-
tated data and use that to tag the remaining corpus.
Now ask a human annotator to filter the resulting
mentions. The mentions rejected by the annotator
are simply dropped from the annotation, leaving the
remaining mentions.

3 Relation to Previous Work

This section relates our approach to previous work
on semi-automated approaches. First we discuss
how semi-automated annotation is different from ac-
tive learning and then discuss some previous semi-
automated annotation work.

3.1 Semi-Automated versus Active Learning

It is important not to confuse semi-automated anno-
tation with active learning. While they both attempt
to alleviate the burden of creating an annotated cor-
pus, they do so in a completely orthogonal manner.
Active learning tries to select which instances should
be labeled in order to make the most impact on learn-
ing. Semi-automated annotation tries to make the
annotation of each instance faster or easier. In par-
ticular, it is possible to combine active learning and
semi-automated annotation by using an active learn-
ing method to select which sentences to label and
then using a semi-automated labeling method.

3.2 Previous work on semi-automated
annotation

The most common approach to semi-automatic an-
notation is to automatically tag an instance and then
ask an annotator to correct the results. We restrict
our discussion to this paradigm due to space con-
straints. Marcus et al. (1994), Chiou et al. (2001)
and Xue et al. (2002) apply this approach with some
minor modifications to part of speech tagging and
phrase structure parsing. The automatic system of
Marcus et al. only produces partial parses that are
then assembled by the annotators, while Chiou et al.
modified their automatic parser specifically for use
in annotation. Chou et al. (2006) use this tag and
correct approach to create a corpus of predicate ar-
gument structures in the biomedical domain. Culota
et al. (2006) use a refinement of the tag and correct
approach to extract addressbook information from e-
mail messages. They modify the system’s best guess
as the user makes corrections, resulting in less anno-
tation actions.

4 Experiments

We now evaluate to what extent our semi-automated
annotation framework can be useful, and how much
effort it requires. For both questions we compare
semi-automatic to fully manual annotation. In our
first set of experiments, we measured the usefulness
of semi-automatically annotated corpora for training
a gene mention tagger. In the second set of exper-
iments, we measured the annotation effort for gene
mentions with the standard fully manual method and
with the semi-automated methods.



Sentence Expression of SREBP-1a stimulated StAR promoter activity in the context of COS-1 cells

gold label Expression of SREBP-1a stimulated StAR promoter activity in . . .

alternative Expression of SREBP-1a stimulated StAR promoter activity in . . .

alternative Expression of SREBP-1a stimulated StAR promoter activity in . . .

Figure 1: An example sentence and its annotation in Biocreative II. The evaluation metric would give full
credit for guessing one of the alternative labels rather than the “gold” label.

4.1 Measuring Effectiveness

The experiments in this section use the training data
from the the Biocreative II competition (Tanabe et
al., 2005). The data is supplied as a set of sentences
chosen randomly from MEDLINE and annotated for
gene mentions.

Each sentence in the corpus is provided as a list of
“gold” gene mentions as well as a set of alternatives
for each mention. The alternatives are generated by
the annotators and count as true positives. Figure 1
shows an example sentence with its gold and alter-
native mentions. The evaluation metric for these ex-
periments is F-score augmented with the possibility
of alternatives (Yeh et al., 2005).

We used 5992 sentences as the data that has al-
ready been annotated manually (set Data-1), and
simulated different ways of annotating the remain-
ing 5982 sentences (set Data-2). We compare the
quality of annotation by testing taggers trained us-
ing these corpora on a 1493 sentence test set.

We trained a high-recall tagger (recall of 89.6%)
on Data-1, and ran it on Data-2. Since we have
labels available for Data-2, we simulated an anno-
tator filtering these proposed mentions by accepting
them only if they exactly match a “gold” or alterna-
tive mention. This gave us an F-score of 94.7% on
Data-2 and required 9981 binary decisions.

Figure 2 shows F1 score as a function of the num-
ber of extra sentences annotated. Without any ad-
ditional data, the F-measure of the tagger is 81.0%.
The two curves correspond to annotation with and
without alternatives. The horizontal line at 82.8%
shows the level achieved by the semi-automatic
method (when using all of Data-2).

From the figure, we can see that to get compa-
rable performance to the semi-automatic approach,
we need to fully manually annotate roughly a third
as much data with alternatives, or about two thirds as
much data without alternatives. The following sec-
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Figure 2: Effect of the number of annotated in-
stances on F1 score. In all cases the original 5992
instances were used; the curves show manual an-
notation while the level line is the semi-automatic
method. The curves are averages over 3 trials.

tion examines what this means in terms of annotator
time by providing timing results for semi-automatic
and fully-manual annotation without alternatives.

4.2 Measuring Effort

The second set of experiments compares annotator
effort between fully manual and semi-automatic an-
notation. Because we did not have access to an expe-
rienced annotator from the Biocreative project, and
gene mention annotations vary subtly among anno-
tation efforts, we evaluated annotator effort on on the
PennBioIE named entity corpus.1 Furthermore, we
have not yet annotated enough data locally to per-
form both effectiveness and effort experiments on
the local corpus alone. However, both corpora an-
notate gene mentions in MEDLINE abstracts, so we
expect that the timing results will not be significantly
different.

We asked an experienced annotator to tag 194

1Available from http://bioie.ldc.upenn.edu/



MEDLINE abstracts: 96 manually and 98 using the
semi-automated method. Manual annotation was
done using annotation software familiar to the an-
notator. Semi-automatic annotation was done with a
Web-based tool developed for the task. The new tool
highlights potential gene mentions in the text and al-
lows the annotator to filter them with a mouse click.
The annotator had been involved in the creation of
the local manually annotated corpus, and had a lot of
experience annotating named entities. The abstracts
for annotation were selected randomly so that they
did not contain any abstracts tagged earlier. There-
fore, we did not expect the annotator to have seen
any of them before the experiment.

To generate potential gene mentions for the semi-
automated annotation, we ran two taggers on the
data: a high recall tagger trained on the local corpus
and a high recall tagger trained on the Biocreative
corpus. At decode time, we took the gene mentions
from the top two predictions of each of these taggers
whenever there were any gene mentions predicted.
As a result, the annotator had to make more binary
decisions per sentence than they would have for ei-
ther training corpus alone. For the semi-automated
annotation, the annotator had to examine 682 sen-
tences and took on average 10 seconds per sentence.
For the fully-manual annotation, they examined 667
sentences and took 40 seconds per sentence on av-
erage. We did not ask the annotator to tag alterna-
tives because they did not have any experience with
tagging alternatives and we do not have a tool that
makes the annotation of alternatives easy. Conse-
quently, effort totals for annotation with alternatives
would have been skewed in our favor. The four-fold
speedup should be compared to the lower curve in
Figure 2.

5 Discussion and Further Work

We can use the effort results to estimate the relative
effort of annotating without alternatives and of semi-
automated annotation. To obtain the same improve-
ment in F-score, we need to semi-automatically an-
notate roughly a factor of 1.67 more data than using
the fully manual approach. Multiplying that by the
0.25 factor reduction in annotation time, we get that
the time required for a comparable improvement in
F-score is 0.42 times as long – a 58% reduction in

annotator time.
We do not have any experiments on annotating

alternatives, but the main difference between semi-
automated and fully-manual annotation is that the
former does not require the annotator to decide on
boundaries. Consequently, we expect that annota-
tion with alternatives will be considerably more ex-
pensive than without alternatives, since more bound-
aries have to be outlined.

In future work, it would be interesting to compare
this approach to the traditional approach of manually
correcting output of a system. Due to constraints
on annotator time, it was not possible to do these
experiments as part of the current work.
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