
Graphical Query for Linguistic Treebanks

Steven Bird
Department of Computer Science

University of Melbourne
Victoria 3010, Australia

sb@csse.unimelb.edu.au

Haejoong Lee
Linguistic Data Consortium
University of Pennsylvania

Philadelphia PA 19104-2653, USA
haejoong@ldc.upenn.edu

Abstract

Databases of hierarchically annotated text
occupy a central place in linguistic re-
search and language technology develop-
ment. We describe a new approach to tree
query which we call “Query by Annota-
tion”. Users express a query by anno-
tating a tree, and the annotation is com-
piled into an expression in a path lan-
guage. The result trees are overlaid with
the original query, permitting the user to
see why they match. Since queries and
results are annotated trees, users can eas-
ily refine and resubmit their queries. The
approach to Query by Annotation is moti-
vated and exemplified using databases of
linguistic trees, or treebanks.

1 Introduction

Large repositories of text and speech data are rou-
tinely collected, curated, annotated, and analyzed
as part of the task of developing and evaluating
language technologies. These repositories contain
millions of words of text, along with various an-
notations at the levels of phonetics, prosody, or-
thography, syntax, dialog, and gesture. The an-
notations are often hierarchical in nature, and are
anchored to extents of text or speech. The hierar-
chical annotations can be stored as ordered trees.

Empirical investigations of hierarchically anno-
tated linguistic data typically involve the identi-
fication or extraction of substructures, according
to their position within the overall structure and
their internal organisation. Consider the following
kinds of access to syntactic trees: find instances of
the dative construction (a verb phrase containing
a verb followed by two noun phrases); extract all
simplex noun phrases (noun phrases that do not
contain other noun phrases) collect prepositional
phrase attachment data (verb, preposition, head

noun, attachment node). In each of these cases,
and many others we could list, we may want to
find instances of theoretical interest, or create a
derived corpus, or extract features for training an
automatic classifier. And in each case, we would
like to be shielded from the physical storage of the
corpus as a directory tree of formatted text files.
All these needs are served by linguistic query lan-
guages.

Over a dozen linguistic query languages have
been proposed, each with its own specialised in-
terpreter for evaluating queries against a corpus
(Rohde, 2001; König and Lezius, 2001; Kepser,
2003; Resnik and Elkiss, 2003; Mı́rovský, 2006;
Lai and Bird, 2004). For concreteness, the work
presented here will be based on the LPath lan-
guage. This language has full first-order expres-
siveness (Lai, 2005), and can be translated into
SQL for efficient evaluation (Bird et al., 2006).
Although we have selected LPath, our approach is
independent of the underlying tree query language
and tool infrastructure. Also for concreteness, our
examples will be drawn from English syntax and
the Penn Treebank (Marcus et al., 1993). How-
ever, our approach is independent of the linguistic
domain and data source, and can be applied to any
hierarchically-annotated time-series data.

This paper presents a new approach to query-
ing linguistic trees, namelyQuery by Annotation
(QBA). In this approach, a query is expressed as
an annotation of a given tree. Such a query de-
notes a set of trees which are similar to the given
tree in precise ways. It is related to an existing
approach to database query known as Query by
Example (Zloof, 1977). It differs from XQBE,
XQuery by Example (Braga et al., 2005), in that
it only covers the selection component, and it is
tailored for the specific domain of linguistic tree
query. It differs from graphical interfaces to XPath
that permit users to type an XPath query and see
node-sets highlighted on an instance document, in

that it supports direct annotation of a query on a
tree, displayed in the customary form of a parse
tree.

QBA provides users with several benefits rela-
tive to direct use of a path language. First, QBA
provides a high-level interface to a path query lan-
guage, avoiding the need for users to learn a query
syntax. Second, QBA queries are not createdex
nihilo, but by annotating an object from the do-
main. Users find it easy to express queries of the
form: “find me more trees that are like this one in
the specified way.” Third, result trees can be auto-
matically overlaid with the original query, which
means that queries and results are of the same
type, namely annotated trees. A user sees why the
query matched, and can edit the annotation to re-
fine the query.

The main contributions of this work are as
follows: a new approach to graphical, semi-
structured query is presented, in which examples
are annotated with a query graph, and queries
are translated into SQL, and results are annotated
with the original query; an application to linguis-
tic databases is described, motivating and exem-
plifying the approach; and an implementation is
reported, involving translation steps from an an-
notated tree to a path language, thence to SQL for
evaluation.

This paper is organised as follows. In Sec-
tion 2 we review key background topics including
linguistic annotation, corpus curation, and query
by example. In Section 3 we present our ap-
proach to query by annotation, and in Section 4
we show how annotated queries are translated into
the LPath language, then in Section 5 we explain
how queries are overlaid on result trees. Section 6
describes a prototype implementation, and Section
7 reports our conclusions.

2 Background

2.1 Linguistic Annotation

Linguistic databases consist of time-series data
together with structured annotations. The time-
series data represents an external linguistic arte-
fact, and takes the form of a text or recording. The
relationship between the primary data and its an-
notations is shown schematically in Figure 1.

A common data model for linguistic annota-
tions is a labelled, ordered tree. (The nodes of the
tree are ordered, by virtue of the linear ordering of
the time-series data.) A natural candidate for rep-

Figure 1: Linguistic Annotation: Structured Cod-
ing of Extents of Time-Series Data (e.g. Character
Data, Audio Data)

resenting trees is XML, as shown in Figure 2(a).
These structures can be stored efficiently in rela-
tional form, using a span-based representation as
shown in Figure 2, following (Bird and Liberman,
2001; Bird et al., 2006).

2.2 Curating Treebanks

Treebanks are typically created over an extended
period. Initial processing is done using a statisti-
cal parser, followed by substantial manual editing.
During the course of this activity, highly-specific
annotation conventions are developed; these con-
ventions are further elaborated as new construc-
tions are encountered. Thus, treebank creation in-
volves significantcurationwork.

A typical part of the curation workflow is for a
linguistically trained annotator to discover an in-
correct parse (generated by a statistical parser),
and then try to identify all other occurrences of
the faulty structure and to rectify them as neces-
sary. In the earliest days of treebank development,
such curation was done by editing labelled brack-
etings in a text file, aided with editing macros and
Perl scripts. Not surprisingly, this approach did
not scale well. A common response has been to
develop a tree query language.

2.3 Querying Linguistic Trees

Many tree query languages have been developed
for parsed corpora, e.g. tgrep, TIGERSearch, fsq,
LSE, Netgraph (Rohde, 2001; König and Lez-
ius, 2001; Kepser, 2003; Resnik and Elkiss, 2003;
Mı́rovský, 2006). For a survey, please see (Lai
and Bird, 2004). Current graphical tree query in-
terfaces permit users to draw partial trees from

<S>
<NP lex="I"/>
<VP>
<V lex="saw"/>
<NP>
<NP>
<Det lex="the"/>
<Adj lex="old"/>
<N lex="man"/>

</NP>
<PP>
<Prep lex="with"/>
<NP>
<Det lex="a"/>
<N lex="dog"/>

</NP>
</PP>

</NP>
</VP>
<N lex="today"/>

</S>
(a) XML Representation

left right depth id pid name value

1 10 1 2 1 S
1 2 2 3 2 NP
1 2 2 3 2 @lex I
2 9 2 4 2 VP
2 3 3 5 4 V
2 3 3 5 4 @lex saw
3 9 3 6 4 NP
3 6 4 7 6 NP
3 4 5 8 7 Det
3 4 5 8 7 @lex the

. . .

(b) Relational RepresentationT

Figure 2: Linguistic Tree Representations

scratch, and the fragments are matched against
trees in the treebank (Resnik and Elkiss, 2003;
Mı́rovský, 2006). These existing approaches have
shortcomings in the areas of interactiveness and
expressiveness.

First, tree queries are seldom single-shot, but
must be successively refined. As with web queries
– where the original query is displayed in editable
form along with the result – formulating suitable
linguistic tree queries would be aided by a user in-
terface that supports interactive query refinement.

Second, tree queries generally involve a vari-
ety of transitive relations (e.g. precedence) and
negated expressions which cannot be expressed by
drawing tree fragments.

2.4 Query by Example

Query by Example (QBE) was an early approach
to user-friendly database query that shielded the
user from the SQL query language (Zloof, 1977).
Users search for data by partly completing a form,
and this is then interpreted as an SQL query and
submitted to the database engine. In short, the user
initiates a search simply by providing an example
of what they are seeking.

QBE is a natural way to explore and curate tree-
banks, given the typical workflow of progressing
from an instance to a set of “similar” instances. Of
course, the notion of tree similarity changes from
one case to the next, and may depend on a com-
bination of factors including structure, categories,

and terminals. Thus we should not use a whole
tree as the basis for identifying similar trees. In-
stead, we propose toannotatea tree in order to
specify which properties must hold for any “simi-
lar” tree.

2.5 LPath

LPath is a language for querying linguistic trees
which extends XPath (Clark and DeRose, 1999)
with new primitive horizontal tree navigation axes,
subtree scoping and edge alignment, summarised
in Table 1. This language has full first-order ex-
pressiveness (Lai, 2005), and can be compiled into
SQL for efficient evaluation (Bird et al., 2006).
Here is the translation of the query//A//B into
SQL:
select T1.* from T T0, T T1
where T0.type=’syn’ and T0.name=’A’
and T1.type=’syn’ and T1.name=’B’
and T0.sid=T1.sid and T0.tid=T1.tid
and T0.l<=T1.l and T0.r>=T1.r and T0.d<T1.d

Many useful queries turn out to be simple to ex-
press in this path language, owing to the fact that
linguists identify tree nodes and relationships be-
tween nodes by reference to structurally local in-
formation.

3 Query by Annotation

Query by Annotation is an approach to tree query
in which a user annotates an existing tree – the
“base tree” with a query. The base tree may be
any tree found in the treebank by browsing or

Table 1: LPath Navigation Axes

Type LPath Axis Abbreviation Closure Core XPath Support
child /

√

Vertical descendant /descendant:: /+ √

parent \
√

ancestor /ancestor:: \+ √

immediate-following -〉 ×
Horizontal following --〉 -〉+ √

immediate-preceding 〈- ×
preceding 〈-- 〈-+ √

immediate-following-sibling =〉 ×
Sibling following-sibling ==〉 =〉+ √

immediate-preceding-sibling 〈= ×
preceding-sibling 〈== 〈=+ √

self .
√

Other attribute @
√

by an earlier search. The query is an annotation
of the base tree in which a subset of the nodes
are selected. Lines are drawn between pairs of
selected nodes to indicate structural relationships
such as “descendent” and “following” that should
hold true in any results from a new query. Node la-
bels and attributes are modified as necessary. The
result of a query by annotation is a collection of
trees, each annotated with the original query. This
section describes the graphical elements of the
query interface and shows how they correspond to
LPath components.

3.1 Axes

The most basic component of a query is a rela-
tion between a pair of tree nodes. The inventory
of atomic queries is shown in Figure 3, along with
translations into LPath.

Observe that the expected relation can be in-
ferred from the base tree. In the context of a graph-
ical interface this saves effort because the user can
simply connect nodes without needing to specify
the relations. Users can override this default inter-
pretation by clicking on the line to cycle through
its possible interpretations, as shown in Figure 4.

3.2 Filters, nodes and attributes

We have observed that users often pose a query
which generates far too many results. Evidently
the user is not aware of the variety of data con-
tained in a treebank. There are four main ways
a result set can be narrowed. First, the user can
make node relations more specific (e.g. change

“descendent” to “child”). Second, the user can
specify node attributes (e.g. mark an NP node
as temporal by adding theTMP attribute). Third,
the user can edit the existing query, adding new
edges to more narrowly describe the desired result
set. Finally, the user can add new negated edges
to remove trees – such as the one currently being
viewed – from the result set.

3.3 LPath alignments and scopes

The LPath language has additional features that
make it more expressive than XPath. Two of these
are alignment and scope, linguistically important
properties that need to be represented in the graph-
ical query.

LPath permits queries that stipulate the left- or
right-alignment of a subtree within the scope of
some ancestor node (e.g. to find a prepositional
phrase that is final within an ancestor verb phrase).
The GUI makes this expressiveness available by
permitting users to right-click on a node and tog-
gle the alignment information.

LPath also permits queries to specify that sub-
expressions remain within the scope of a particular
node. All downward navigations – the “child” and
“descendent” axes – introduce a new scope. Sub-
sequent horizontal navigations remain inside the
scope of the dominating node iff the corresonding
node in the base tree also falls under that node.

For example, in the tree in Figure 3(a), a query
starting at the leftNP, which goes down to the child
DT then across to the followingNN has the follow-
ing scope, by default://NP{/DT=〉NN}. A query

S

NP VP

PPVBDDT NN

IN NP

DT NN

(a) Base Tree

S

NP VP

PPVBDDT NN

IN NP

DT NN

(b) Child: //VP/PP

S

NP VP

PPVBDDT NN

IN NP

DT NN

(c) Descendent: //VP//IN

S

NP VP

PPVBDDT NN

IN NP

DT NN

(d) Sibling: //VBD=¿PP

S

NP VP

PPVBDDT NN

IN NP

DT NN

(e) Immediately Following: //NP-
¿VBD

S

NP VP

PPVBDDT NN

IN NP

DT NN

(f) Following: //NP–¿NP

Figure 3: Translation of QBA Primitives to LPath Axes

which starts from the sameNP, then goes down to
the childDT as before, then across to the following
VBD actually leaves the scope of theNP, and the
scope is as follows://NP{/DT}--〉VBD.

In the graphical interface, the depth of scope
nesting is indicated using a superscript integer.
The user can toggle its value to expand or shrink
the scope, thereby constraining or relaxing the
query (respectively).

4 Query Translation

4.1 Approaches to translation

Several approaches to query translation have been
investigated. Perhaps the most obvious is di-
rect graph matching, in which a query is matched
against a tree using powerful graph matching tech-
niques (Messmer and Bunke, 1998). However, this
approach is inadequate, for two simple reasons.
First, the query graph is not a subgraph of the re-
sult tree. The transitive axes such as “descendent”
are not explicit in the treebank. Second, queries
involve negation and it is meaningless to match
negated edges against actual edges in a treebank.
In these respects, queries are not partial trees, but
partialdescriptionsof trees.

Another approach is to use first-order logic over
trees or annotation graphs (Bird and Liberman,
2001). In the case of trees, direct translation is not
possible as the “immediate following” axis cannot
be expressed (it would involve an arbitrary number
of joins, inexpressible in a first order language). In
the case of annotation graphs the dominance axes
cannot be expressed (these also involve an arbi-
trary number of joins to navigate from an edge to
another edge included within its span).

Instead, we convert the graphical queries to
LPath, and to use the existing LPath query inter-
preter for onward translation from LPath to SQL
(Bird et al., 2006). This approach imposes the re-
striction that the query graph must be connected,
and we have not found this restriction to pose any
problems in practice. (The restriction is conve-
niently implemented in the user interface, as it im-
plements the notion of an active node, and new
edges can only be added by linking back to this
active node.)

4.2 Linear queries

So far we have seen how atomic queries are trans-
lated. The interpretation of individual edges has a
well-defined default, and various alternatives that

S
1

A

P F
1

F
2

F
1X

C
1

C
2

D
1

D
2

S
2

F
1

F
2

target default axis other axes
A \\ \

P \ \\

S1 <= <==, <-, <--
S2 <== <=, <-, <--
F1 -> -->, =>, ==>
F2 --> ->, =>, ==>
C / //

D // /

Figure 4: Default and Alternative Interpretations of QBA Primitives Relative to Node X

are selected via the user interface (Figure 4). Con-
sequently, we will abstract away from the identity
of each axis and focus on the structure of complex
queries.

The next step in increasing query complexity is
a query involving two relationsr1 andr2 and a sin-
gle shared node (Figure 5(a)). The translation can
start at either end of this path, and simply gener-
ate a query of the form:Ar1Br2C. This method
generalises to linear queries of arbitrary length. It
is immaterial which end we start from, as the re-
sult of a query is always a whole tree, not a set of
nodes (as is the case for XPath queries).

4.3 Branching queries

In general, the structure of a query graph is afree
tree, a tree with no specified root node and no sib-
ling order. The smallest possible branching query
involves three relationsr1, r2 and r3 with a sin-
gle shared node, in a Y structure. The interpreter
breaks this structure into a linear component and
a branch (Figure 5(b)). The linear component can
be translated as before. The branch is also linear
and can be translated in the same way. The final
step is to connect the pieces together. This is done
using afilter expression, an expression contained
inside brackets and anchored at a particular node:
Ar1B[r3D]r2C. In this expression,B is located at
the centre, and is related toA, D, andC.

Negated branches are also handled in this way.
Thus if a negated edge linksB and D we would
have:Ar1B[notr3D]r2C (Figure 5(c)). Multiple
branches emanating from a single node can be ex-
pressed using conjunction within the filter expres-

sion. We use nested filter expressions to translate
branches upon branches (Figure 5(d)). Now, given
that the linear components of queries can have ar-
bitrary length, and branch points can occur at any
node, we can translate query graphs of arbitrary
complexity.

5 Result Overlay

In order to help the user identify where the query
matches with the result tree, the graphical query
that the user has drawn is overlayed over the new
tree. This also helps the user to refine the query,
which otherwise has to be redrawn from scratch.

5.1 Database query and result rendering

The graphical query drawn by the user is translated
into an LPath query. This in turn is translated into
an SQL query by an LPath-to-SQL translator (Bird
et al., 2006) (source code available fromhttp:
//nltk.org/nltk contrib/lpath/). The ob-
tained SQL query is sent to a remote database
server and a result table is sent back. The result
table contains a set of rows. Each row is a node
in a tree that matches with the query, and it also
corresponds to the last node of the original LPath
query.

Unique tree ids are retrieved from the result ta-
ble. For each of the ids, as requested by the user,
the entire tree is retrieved (i.e. a set of rows, each
for a node from the tree in question). This table is
transformed to a tree and rendered on the display.
Node ids in the original table are kept during query
translation to permit overlay of the original query
in the graphical display.

A

B

C

r
1

r
2

(a) Linear
Query

A

B

C

r
1

r
2

D

r
3

(b) Branching Query

A

B

C

r
1

r
2

D

r
3

(c) Negated Branch

A

B

C

r
1

r
2

Dr
3

E

F

r
4

r
5

(d) Nested Branch

Figure 5: Structure of Complex Queries

Algorithm 1 Compute and Display Overlay
1: procedure COMPUTEOVERLAY (G,A,S) ⊲ G

is the graphical tree object; A is the nodes of query
expression in DFS order; L is the node ids for one
tree returned by query engine; Returns mappings of
query nodes to tree nodes

2: LA← ⊲ mapping from L to A
3: c← 0
4: for all i in L do ⊲ for all node ids
5: LA[i]← A[c]
6: c+ = 1
7: end for
8: LG← ⊲ mapping from L to G
9: for all i in L do ⊲ for all node ids

10: LG[i]← G.search(i)
11: end for
12: return LA ⊲⊳ LG
13: end procedure
14: procedure DISPLAYOVERLAY (Q,M) ⊲ Q is the

query graph; M is the mapping from ComputeOver-
lay; Updates display

15: for all a(i, j ,t) in Q do ⊲ each axis in query
16: draw (M[i],M[j],t)
17: end for
18: end procedure

5.2 Overlay

The LPath query returns a set of nodes in the
database that match the last element in the query.
An extension is made to the LPath-to-SQL transla-
tor so that all nodes in the query are selected rather
than just the last node in the query:
select T0.*, T1.* from T T0, T T1
where T0.type=’syn’ and T0.name=’A’
and T1.type=’syn’ and T1.name=’B’
and T0.sid=T1.sid and T0.tid=T1.tid
and T0.l<=T1.l and T0.r>=T1.r and T0.d<T1.d

Each row of the result table returned by this
modified SQL query is thus a super-tuple that is
a concatenation of sub-tuples, one per node. And
in the super-tuple, sub-tuples appear in depth-first-
search order relative to the tree representation of

the LPath query. Then, for each super-tuple, a list
of node ids is extracted, and a mapping from this
list to the LPath query tree is computed. Also, us-
ing this list of ids, nodes involved in the overlay
are identified from the rendered result tree. Fi-
nally, axes between nodes are recovered and dis-
played. These steps are shown in Algorithm 1

6 Prototype

We have implemented a prototype of QBA tool us-
ing Python and PyQt. The main components of
the tool are described below. Figure 6 provides a
screenshot of the tool.

An enriched tree data structure is used to store
trees and graphical queries drawn by users. The
GUI component renders this structure as a tree,
and allows users to annotate it with a graphical
query. Once the graphical query is translated to
LPath, it is further translated into an SQL query
by an LPath-to-SQL translator. We use NLTK to
compile the LPath grammar and to parse LPath
queries (nltk.org, Bird (2006)). In order to sup-
port query overlay, the translator also provides a
modified SQL translation described in Section 5.2.

The database component maintains a connec-
tion to a database server. When a request arrives
with an LPath query, it uses the LPath-to-SQL
translator to translate it into an SQL query, sends
the translated query to the server, and returns the
result to the client. A user can connect to either Or-
acle or PostgreSQL database. Depending on user’s
connection choice, the database component is con-
figured to one of the database systems at runtime.

Figure 6: Screenshot of LPath QBA Tool

7 Conclusion

Treebanks have become centrally important in lin-
guistic research and language technology. Tree-
banks are now being developed for dozens of lan-
guages,1 and for a wider range of linguistic phe-
nomena (e.g. discourse analysis, Miltsakaki et al.
(2004)). Earlier work has showed how such tree
data can be represented in a relational database
and interrogated using a linguistically motivated
path language called LPath. Here we have de-
scribed a new, high-level approach to querying lin-
guistically annotated data, which we call Query
by Annotation. Unlike existing approaches to tree
query, queries and results are of the same type: an-
notated trees. Users see why their query matches
a result tree. Moreover, they can easily refine
their query, constraining or expanding its scope as
needed. The resulting approach to graphical query
fits naturally into common workflows in linguistic
data exploration and curation.

1For a list of languages for which treebanks are available,
seehttp://en.wikipedia.org/wiki/Treebank

References

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL
2006 Interactive Presentation Sessions, pages
69–72. Association for Computational Linguis-
tics, Sydney, Australia.http://www.aclweb.
org/anthology/P/P06/P06-4018.

Steven Bird, Yi Chen, Susan B. Davidson, Hae-
joong Lee, and Yifeng Zheng. 2006. De-
signing and evaluating an XPath dialect for
linguistic queries. In 22nd International
Conference on Data Engineering, pages 52–
61. http://eprints.unimelb.edu.au/

archive/00001455/.

Steven Bird and Mark Liberman. 2001. A formal
framework for linguistic annotation. Speech
Communication, 33:23–60. http://arxiv.

org/abs/cs/0010033.

Daniele Braga, Alessandro Campi, and Stefano
Ceri. 2005. XQBE (XQuery By Example): A
visual interface to the standard XML query lan-
guage. ACM Transactions on Database Sys-
tems, 30(2):398–443.

James Clark and Steve DeRose. 1999.XML Path
language (XPath). W3C. http://www.w3.

org/TR/xpath.

Stephan Kepser. 2003. Finite structure query: a
tool for querying syntactically annotated cor-

pora. InProceedings of the Tenth Conference
of the European Chapter of the Association for
Computational Linguistics, pages 179–186.

Esther König and Wolfgang Lezius. 2001. The
TIGER language: a description language for
syntax graphs. part 1: User’s guidelines. Tech-
nical report, University of Stuttgart, Stuttgart,
Germany.http://citeseer.ist.psu.edu/
article/knig01tiger.html.

Catherine Lai. 2005. A Formal Framework for
Linguistic Tree Query. Master’s thesis, Depart-
ment of Computer Science and Software Engi-
neering, University of Melbourne.

Catherine Lai and Steven Bird. 2004. Querying
and updating treebanks: A critical survey and
requirements analysis. InProceedings of the
Australasian Language Technology Workshop,
pages 139–146.http://eprints.unimelb.
edu.au/archive/00000774/.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguis-
tics, 19(2):313–30.http://www.cis.upenn.
edu/∼treebank/home.html.

Bruno T. Messmer and Horst Bunke. 1998. A new
algorithm for error-tolerant subgraph isomor-
phism detection.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):493–
504.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi,
and Bonnie Webber. 2004. The penn dis-
course treebank. InProceedings of the 4th In-
ternational Conference on Language Resources
and Evaluation. Paris: European Language
Resources Association.http://www.seas.
upenn.edu/∼pdtb/papers/lrec04.pdf.

Jiřı́ Mı́rovský. 2006. Netgraph: a tool for search-
ing in prague dependency treebank 2.0. InPro-
ceedings of The Fifth International Conference
on Treebanks and Linguistic Theories, pages
211–222. http://quest.ms.mff.cuni.cz/
netgraph/pub/2006 tlt.pdf.

P. Resnik and A. Elkiss. 2003. The lin-
guist’s search engine: Getting started
guide. Technical Report LAMP-TR-
108/CS-TR-4541/UMIACS-TR-2003-109,
University of Maryland, College Park.
http://lse.umiacs.umd.edu:8080/.

D. Rohde. 2001. Tgrep2 user manual.http://
citeseer.ist.psu.edu/569487.html.

M. M. Zloof. 1977. Query-by-example: A
data base language. IBM Systems Journal,
16(4):324–343.

