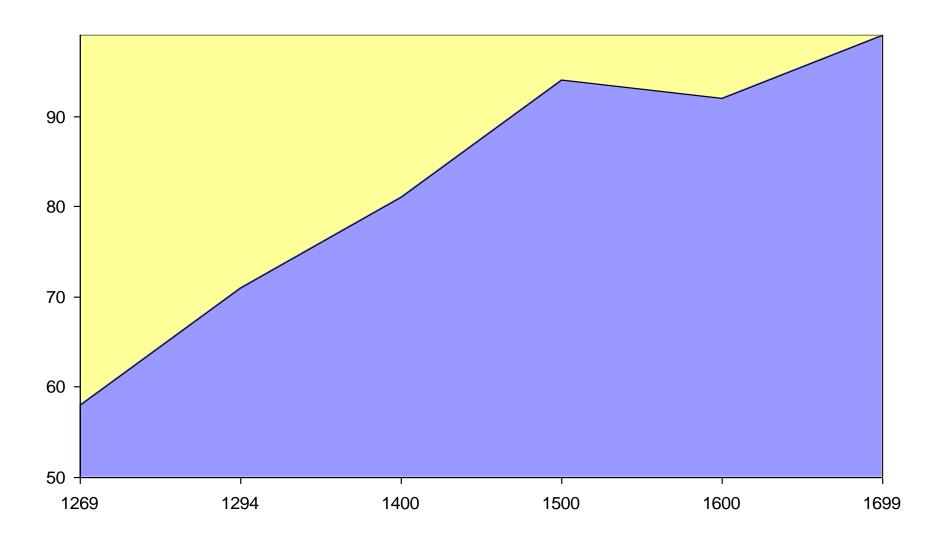
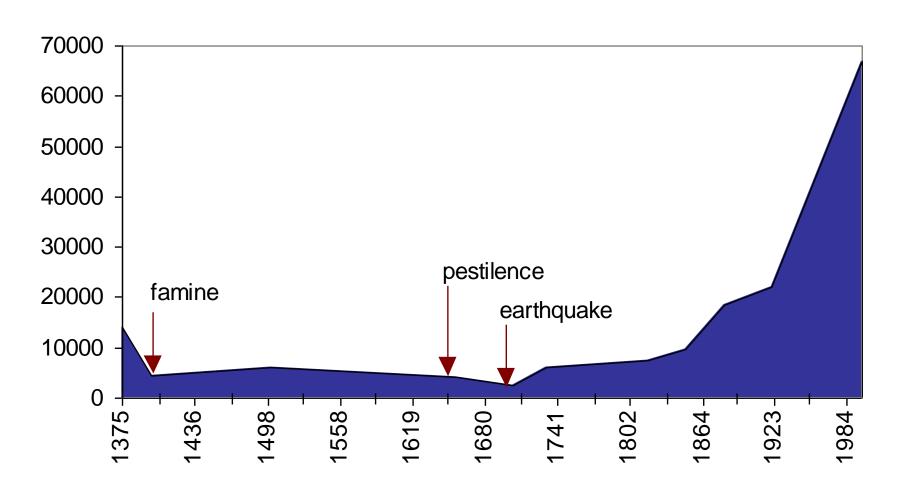
Models of Phonological Variation for Multi-dialectal Communities: the case of L'Aquila

Christopher Cieri
University of Pennsylvania
Linguistic Data Consortium


ccieri@ldc.upenn.edu

www.ldc.upenn.edu/Papers

This work was supported in part by a Salvatori Research Award from the Italian Studies Center of the University of Pennsylvania.

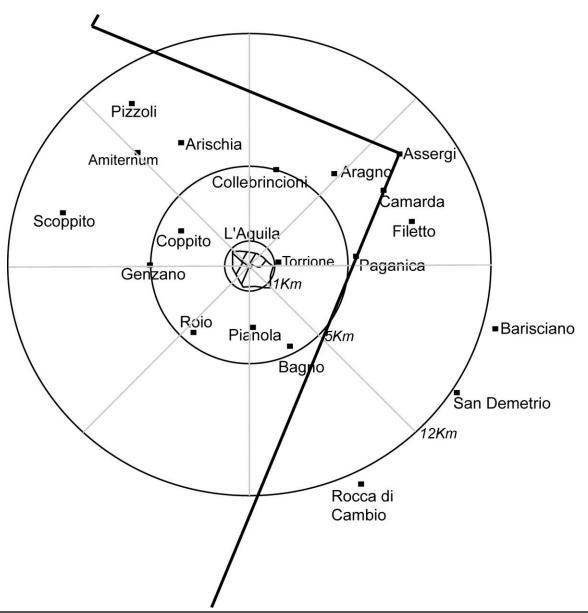

Population Movement

Communities in L'Aquila from 1269 through 1699

Population Movement

Population of L'Aquila

Approaches to Variation


Approaches to Variation

- postulate an ideal, non-varying speaker-hearer
- search for yet unknown factors conditioning invariant forms
- acknowledge as free variation
- acknowledge as result of dialect mixing or creolization
- acknowledge that variation is inherent, modeling it directly

In Italy

- Standard Italian is commonest model but native language or few or none depending upon definition
- Dialects continue in vigorous, if waning, use.
- Regional Italians are the varieties in common use.
- Italian studies of variation in Italian tend toward dialect-mixing models (Trumper 1993).
- The presence of multiple dialects in many Italian speech communities complicates the analysis of variation within any one.
 - Investigate variation in one variety in one speech community, Regional Italian in L'Aquila, Abruzzo.

Giammarco Aquilano/Abruzzian Dialects

Abruzzian Vowel Systems

Classical Latin	Vulgar Latin	Standard Italian	Aquilano- Reatino	Western Abruzzian	Eastern Abruzzian	Teramano
Ī		i	i	i	i	i
Ĕ	ė	е	е	e/_# E⁄_C#	E	
Ĕ	Ę	E	Е	<u> </u>		
Ā Ă	А	а	а	а	а	а
Ŏ	Q	0	0	0/ #	0	
Ō Ŭ	Ò	0	0	o/_# O_C#		
Ū	U	u	u	u	u	u

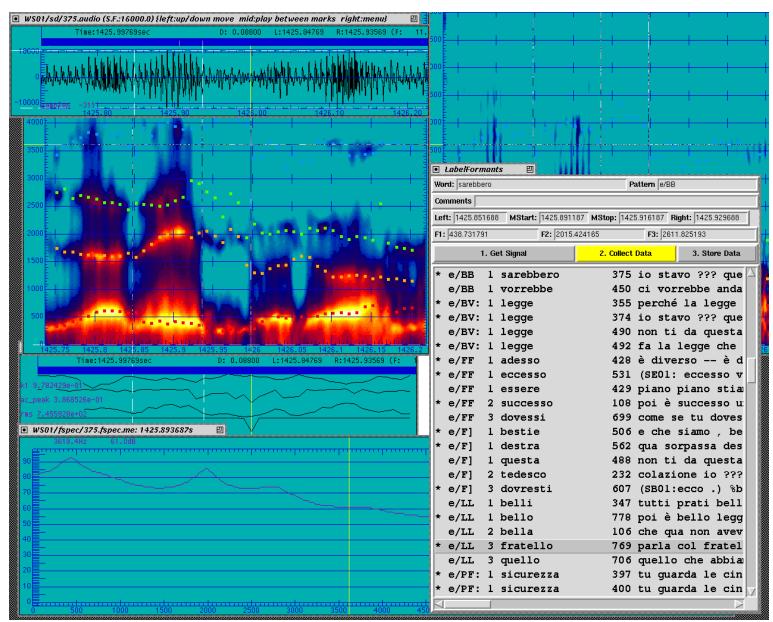
Aquilano retains vowel distinctions (Giammarco 1985). neva, eta, fredda, vedova prEta pEkera, IEbbre

Dialects to the east show progressive simplification of the vowel system.

Variation in Dialects of Abruzzo

- Avolio's Atlante Linguistico ed Etnografico Informatizzato della Conca Aquilana (ALEICA) confirms transitional band between central and southern Italian dialects passing inside the municipal territory of L'Aquila.
- The reinterpretation, previously unattested, of final /★/ as /e/ in Assergi and Bagno in the dialect of older women (Avolio 1995).

Methodology

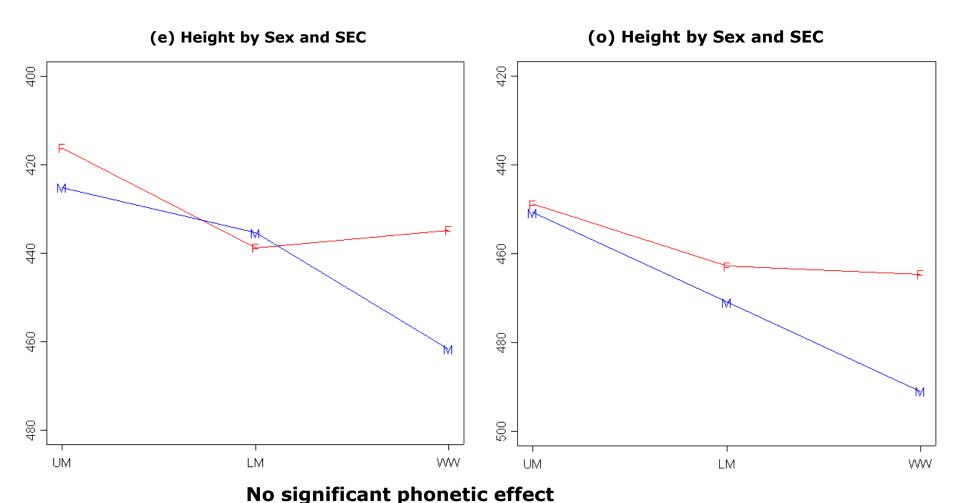

Rickford (1979) sets tone

- "An important principle of the new approaches to variation is accountability to a corpus of empirical data"

Data from

- sociolinguistic interviews plus formal elicitation from
- 81 subjects of which 31 analyzed for this work
- interviews completely transcribed with time-alignment
- tokens selected and segmented at word and focus (vowel) level
 - » each vowel * each phonetic environment * each situation
- F1-3 hand measured based on LPC, DFT, spectral slice, F0
- additional QC for outliers, normal distribution
- yielding 7016 tokens
- Independent variables
 - » sex, age, SEC, domicile, distance/direction from city center, inside/outside wall, A/F axis, dialect type, dialect frequency, dialect attitude, preceding & following phonetic environment, situation, interviewer

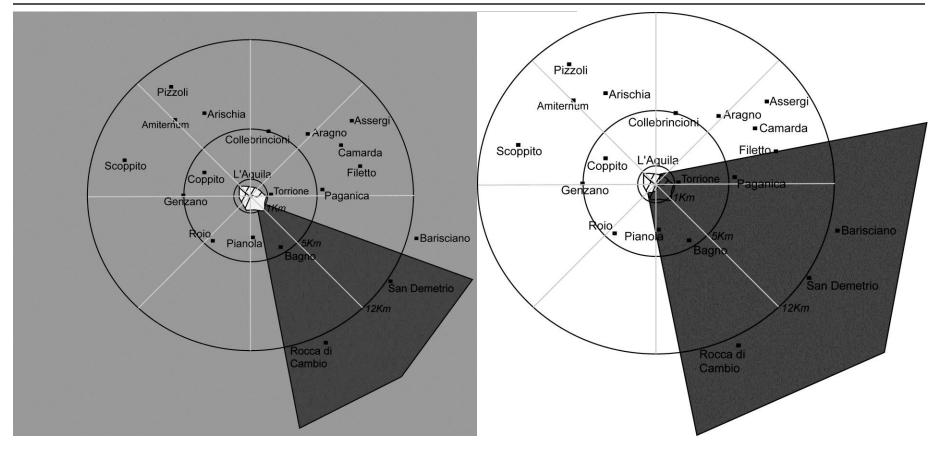
Formant Analysis


Token Selection

Vowel Segmentation

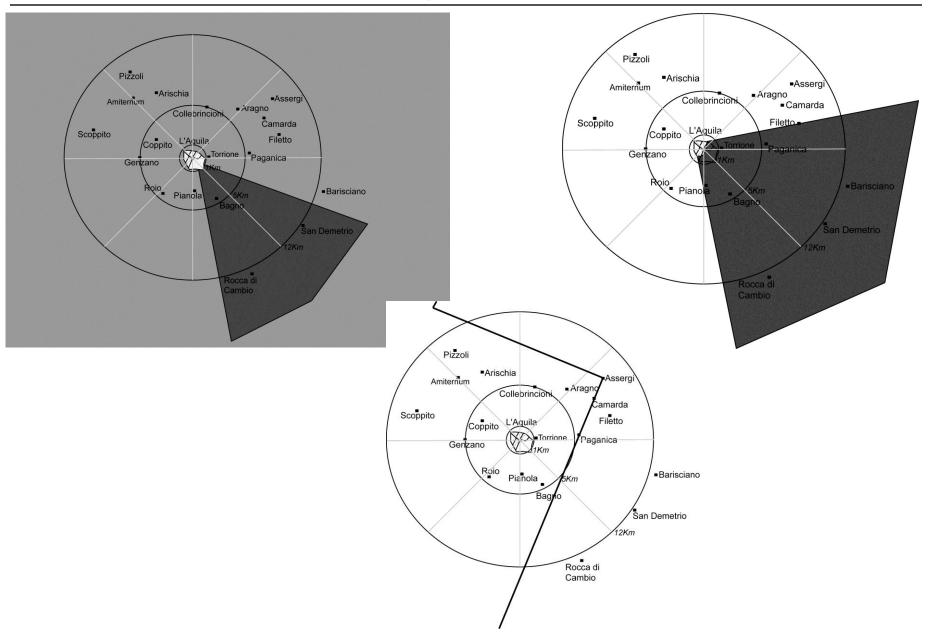
Identification of central tendency of word stressed vowel

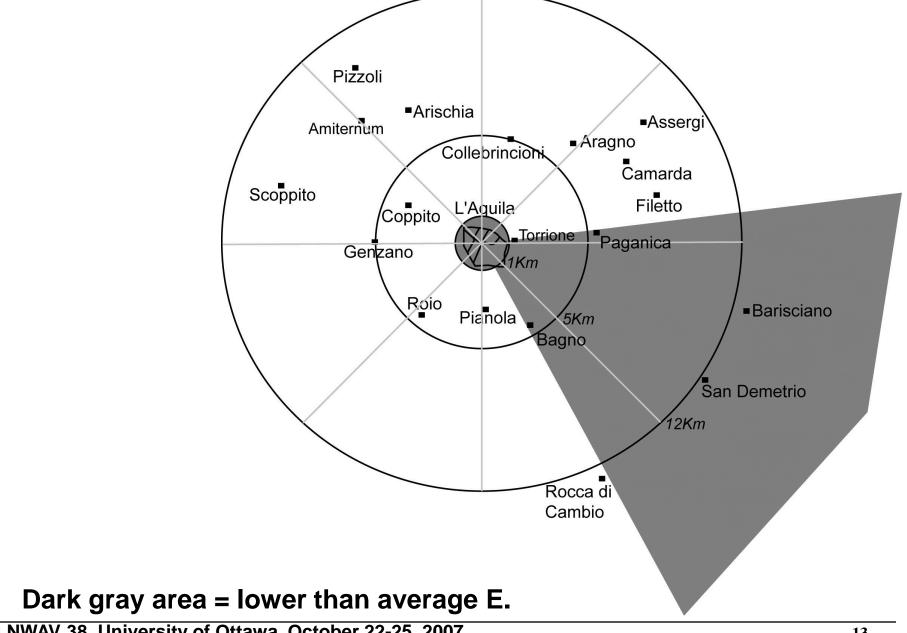
Hand checking of formant tracker values for F1 and F2


e/o Height by Sex, SEC

No effect for age or sex Little effect for distance from city, wall

No effect for position on A-F axis

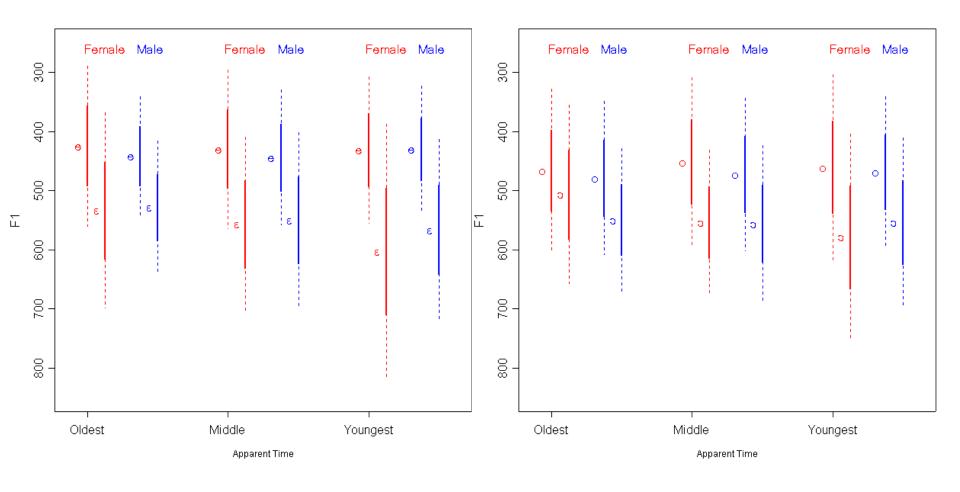

e/o Height by SEC, Domicile


white = higher than average, dark = lower than average

UM ~ Center, LW ~ SE, LW-F ~ UW-F

e Height by SEC, Domicile

E Lowering by Local, Interlocutor


E/O Lowering by Interviewer

Interviewer F1 of /E/ F1 of /O/

CC 570 564

Patrizia M. 529 523

Overall Effect

(c)

- · (c)
 - realization of ci or ce as [ʃ] instead of [t ∫]
 - Significant: PreEnv, Sex
 - Not: FolEnv, Age, SEC, Age*SEC, Situation, Interviewer,
 Distance, Wall, A-F Axis, Center-SE-West

PreEnv	#	С	G	V
	16%	2%	2%	91%
Sex	Female	Male		
	47%	55%		

```
Call:
lm(formula = Code ~ PreEnv + Sex)
Residuals:
             10 Median
                             3Q
    Min
                                    Max
-0.95277 -0.13770  0.04723  0.11680  1.00740
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                     0.01910 7.211 1.15e-12 ***
(Intercept) 0.13770
PreEnvC
          -0.14510 0.02662 -5.451 6.41e-08 ***
PreEnvV 0.74551 0.02213 33.691 < 2e-16 ***
SexM
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2875 on 932 degrees of freedom
Multiple R-squared: 0.6707, Adjusted R-squared: 0.6696
F-statistic: 632.8 on 3 and 932 DF, p-value: < 2.2e-16
```

(sCC)

• (sCC)

- realization of str, spr or scr as []] instead of [s]
- Significant: PreEnv, AgeGroup, Sex, SEC
- Not: FolEnv, Situation, Interviewer, Distance, Wall, A-F Axis, Center-SE-West

PreEnv	#	V	
	7%	19%	
AgeGroup	Youngest	Middle	Oldest
	5%	5%	42%
Sex	Female	Male	
	3%	25%	
SEC	UM	LM	ww

```
Call:
lm(formula = Code ~ PreEnv + AgeGroup + Sex + SEC)
Residuals:
    Min
            10
                Median
                            3Q
                                  Max
-0.53156 - 0.15537 - 0.04286  0.06542  0.90580
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.23655
                    0.07177 -3.296 0.001099 **
PreEnvV
          AgeGroup
        0.15962 0.03535 4.516 9.1e-06 ***
SexM
          -0.05960 0.04212 -1.415 0.158100
SECUM
         0.16119 0.04776 3.375 0.000836 ***
SECWW
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2976 on 297 degrees of freedom
Multiple R-squared: 0.287, Adjusted R-squared: 0.275
F-statistic: 23.91 on 5 and 297 DF, p-value: < 2.2e-16
```

Conclusions

e/o Height

- stable sociolinguistic marker, no evidence of change in progress
- lower SECs, less formal situations produce lower variants
- sex effect limited to WC women who seem to hypercorrect
- center of L'Aquila produces > outside city center > the South and East
- frequent dialect speakers produce lower e
- correlation of higher forms with higher SEC, formality, domicile in city center and less frequent dialect speech and hypercorrection of WC women suggest that Height associated with urbanity and class.

E/O Lowering

- E change in progress, younger subjects produce lower E than older
- women, subjects living in center/SE, lower SECs also tend to produce lower E
 - » except WW class women seem to hypercorrect to a higher E
- lower E appears in less formal situations
- subjects interviewed by native accommodate to her higher E

• C

- Stable, unconscious, linked to phonetic environment and sex

sCC

- conscious
- change nearly finished?
- Still present among oldest, WW males

Conclusions

- Variationist method seems appropriate if applied carefully.
 - no correlation of vowels to suggest variation results from dialect switching
 - consider new variables to account for data
 - each variable behaves differently though similarities between e/o and E/O

	е	О	3	О	С	sCC
PhEnv		✓	√		✓	✓
Age			✓	✓		✓
Sex		√	✓	✓	✓	✓
SEC	✓	✓	✓	✓		✓
Age*SEC	✓	✓	✓	✓		
Situation	✓	✓	✓	√		
Interviewer			✓	✓		
Distance	✓	√				
Wall	✓	√		√		
A-F Axis						
Center-SE-West	✓	✓	✓	✓		