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Abstract Parallel corpus are valuable 
resource for machine translation, multi-
lingual text retrieval, language education 
and other applications, but for various 
reasons, its availability is very limited at 
present. Noticed that the World Wide 
Web is a potential source to mine parallel 
text, researchers are making their efforts 
to explore the Web in order to get a big 
collection of bitext. This paper presents 
BITS (Bilingual Internet Text Search), a 
system which harvests multilingual texts 
over the World Wide Web with virtually 
no human intervention. The technique is 
simple, easy to port to any language pairs, 
and with high accuracy. The results of the 
experiments on German – English pair 
proved that the method is very successful. 

1 Introduction 
Large parallel corpus was proved to be extremely 
useful for research in multilingual natural 
language processing and language teaching, such 
as statistical machine translation [Brown1990] 
[Melamed1998], cross-lingual information 
retrieval [Davis&Dunning1995] 
[Landauer&Littman1990] [Oard1997], lexical 
acquisition [Gale&Church1991a] 
[Melamed1997]. 
However, due to fees and copyright restrictions, 
for all but relatively few language pairs, parallel 
corpora are available only in relatively 
specialized forms such as United Nations 
proceedings [LDC], Canadian Parliament 
debates [LDC], and religious text and software 
manuals [Resnik&Melamed1997]. The available 
parallel corpuses are not only in relatively small 
size, but also unbalanced. 
Lack of large parallel corpus makes some 
research in multilingual natural language 
processing impossible, for example, the majority 
of the machine translation researches are rule-

based, only a few are statistical machine 
translation. Some scholars believe that the lack 
of large parallel corpora makes statistical 
approach impossible, the researchers don’t have 
large enough parallel corpuses to give some 
language pairs a shot. 
However, the unexplored World Wide Web 
could be a good resource to find large-size and 
balanced parallel text. According to the web 
survey we did in 1997, 1 of 10 de domain 
websites are German – English bilingual, the 
number of de domain websites is about 150,000 
at that time, so there might be 50,000 German – 
English bilingual websites in de domain alone. 
Things are changing since a potential gold mine 
of parallel text, the World Wide Web, has been 
discovered. Researchers are making their efforts 
to mine parallel text from the web [Resnik1998]. 

This paper presents a method for automatically 
searching parallel text on the Web. It scans a list 
of potential websites, finds the bilingual or 
multilingual websites, downloads them, cleans 
them up, finds pages which are translation pairs 
and stores them in a database. The technique is 
conceptually simple, easy to port to other 
language pairs. We evaluated the system on 
German – English language pair, the results 
indicate that the method is accurate and efficient 
enough to apply without human intervention. 
Section 2 lays out the structure of BITS. Section 
3 describes the translation pair finder in detail, 
which is the core of the method. Section 4 
presents the experiment results. Section 5 
concludes the paper, and Section 6 discusses 
future work. 

2 The BITS Architecture 
The BITS architecture is a simple pipeline. 
Given a particular pair of languages of interest, a 
candidate generation module generates a list of 
websites which have a high possibility of being 
bilingual of the given languages. Then, for each 



website on the list, the website language 
identifier will identify the language property of 
the website. If it is not a bilingual or multilingual 
website, then process next website on the list. 
Otherwise, a web robot downloads all the htmls 
and plain text files from the website recursively. 
Afterwards, the htmls are converted to plain text 
files. Next, a language identifier identifies the 
language of each text file. Finally, a translation 
pairs finder finds all the translation pairs and 
stores them to a database. 

2.1 Candidate Websites Generation 
To generate a list of candidate websites, we 
simply find all the websites in the domains 
which have a high possibility of containing 
parallel text for the given language pair. 
According to a web survey we did in 1997, on 
average, only 1 out of 1000 website is bilingual 
or multilingual. However, if you focus on some 
specific domains, you will discover some very 
interesting fact, for instance, 1 out of 10 website 
in de domain is German – English bilingual. This 
is also reasonable for other domains, similarly, 
ca domain websites are very possible to be 
French – English bilingual. 
Based on this assumption, we can generate the 
candidate list easily. For example, for German – 
English, de (Germany), au (Austria) and lu 
(Luxembourg) domain could be a good start. For 
each of the candidate domains, a list of all the 
www servers can be obtained by querying some 
DNS servers or by crawling the given domain. 

2.2 Website Languages Identification 
To identify whether a given website is 
monolingual or multilingual, we look at pages of 
the top 3 or 4 levels of the website. The language 
identifier can identify the language of each page. 
If there are more than one language used in the 
top 3 or 4 level of a website, we assume the site 
is at least bilingual. There are cases that a 
website has pages of two languages but they are 
not bilingual translations. However, assuming 
they are bilingual won’t hurt. 
Given a text file, language identifier tells in 
which language (natural language) the text is 
written. 
Current language identification techniques 
include small words technique and N-gram 
technique [Grefenstette1995]. Either method 
works well on long sentences (more than 20 
words) and that N-gram is most robust for 
shorter sentences. Both methods are easy to 
implement. Using short words is slightly more 
rapid in execution since there are less words than 

there are N-grams in a given sentence, and each 
sentence attribute contributes a multiplication to 
the probability calculation. 
In our application, we choose N-gram method. 
It’s almost always true that a lot of web pages 
contain only very short lists, not sentence, 
especially for the top level pages. These short 
lists barely contain short words by which the 
language identifier used to identify a language, 
so the short words method fails very often in 
these cases. N-gram method is, however, still 
robust in these cases. 
The features of our language identifier include:  
• Trainable: 

The language identifier could be easily 
trained on a specified set of languages. For 
each language, 100K text is needed to train 
the language identifier. 

• Confidence feedback: 
The language identifier should not only give 
you the language of the text, but also the 
confidence of the judgement. The reason 
that this feature is important is that, you 
can’t train the language identifier on all the 
languages, the confidence gives you a 
chance to tell whether the language is in the 
training set. If the confidence is lower than a 
given threshold, the language is 
‘unidentified’. 

2.3 Website Downloading 
We use GNU Wget to retrieve web pages from a 
remote website.  
GNU Wget is a utility designed for retrieving 
binary documents across the Web, through the 
use of HTTP and FTP, and saving them to disk.  
Wget is non-interactive, which means it can 
work in the background, while the user is not 
logged in. Analyzing server responses, it 
distinguishes between correctly and incorrectly 
retrieved documents, and retries retrieving them 
as many times as necessary, or until a user-
specified limit is reached. 
Wget supports a full-featured recursion 
mechanism, through which you can retrieve large 
parts of the web, creating local copies of remote 
directory hierarchies. Wget understands the robot 
exclusion standard1 – ‘/robots.txt’, used by 
server administrators to shield parts of their 
system from being scanned by web robots. Most 
of the features of Wget are fully configurable, 

                                                        
1 See 
http://info.webcrawler.com/mak/projects/robots/r
obots.html. 



either through command line options, or via the 
initialization file. 
We only retrieve HTML files and plain text files 
because we are only interested in texts. This 
makes the retrieval very fast, since in general 
text files are much smaller than image and audio 
files. 

2.4 HTML Cleanup and Language 
Identification 
The HTMLs are converted to plain text after they 
are retrieved from remote website. The language 
of each page is also identified by the language 
identifier afterwards. 
We noticed that very small files decrease the 
accuracy of language identifier and the 
performance of translation pairs finder. So, we 
put a threshold (500 bytes in our experiment) on 
the plain text files, i.e. if the size of the text file 
is below the threshold, we throw it away. 
This practice doesn’t effect the size of our 
collection a lot, and we get the advantage of 
more accurate prediction of translation pairs 
which may benefit further research a lot. 

3 Finding Translation Pairs 
After the files are cleaned up and language of 
each page is identified, we end up with two lists 
of files, one for each language in the language 
pairs we are interested in, say L1 and L2. The 
problem remains is how to find translation pairs 
among the two lists of files. 

3.1 Overview 
Possible approaches of finding translation pairs 
include filename and path similarity comparison, 
file makeup comparison, and content-based 
similarity comparison. The filename and path 
similarity approach basically compares the full 
path (including file name) of a file A in L1 with 
the full path (including filename) of a file B in 
L2, if some degree of similarity exists between 
the full path of A and the full path of B, it’s very 
possible that file A and file B are mutual 
translations of each other. For example, page 
http://www.freezone.de/index_d.htm is more 
likely to be the mutual translation of page 
http://www.freezone.de/index_e.htm than 
http://www.freezone.de/news/d_intro.htm, since 
http://www.freezone.de/index_d.htm is more 
similar to http://www.freezone.de/index_e.htm 
than http://www.freezone.de/news/d_intro.htm 
is. Considering full path as string, the similarity 
measure of could be of edit distance of two 
strings, such as the Levenshtein 

[Levenshtein1965] distance and the Likeit 
distance [Yianilos1993][Yianilos1997]. The 
intuition here is that the webmasters tend to 
name the files with similar names if they talk 
about the same topic. However, the way a 
webmaster designs a website could be various, 
this makes the file name similarity based 
approach very difficult to give an accurate 
prediction of translation pairs. And, it happens 
very often that the files which comment on the 
same topic could be very much different, since 
web page designer want to show different 
viewers different aspects of a topic. This makes 
things even worse. 
The approach based on file makeup comparison 
assumes that web designers make pages of the 
same content in two languages the same 
appearance. This is often true, but still it does not 
work very well. It filters out pages which are 
translations to each other but without a similar 
appearance and accept some pairs which are not 
mutual translations but with similar makeup. It 
also fails when HTMLs do not have very much 
makeup. 
Human beings can recognize translations easily 
because they have at least some degree of 
knowledge about the languages. The more 
language knowledge they have, more accurate 
they can predict. Based on this observation, we 
propose a content-based approach of finding 
translation pairs, which understands the 
languages in some degree. 

3.2 Content-based Translation Pairs 
Finder 
If two texts are mutual translations, 
corresponding regions of one text and its 
translation will contain word token pairs that are 
mutual translations. We call these token pairs 
translational token pairs. For example, in 
following two sentences, sentence 2 is the 
German translation of sentence 1: 
 

1. The functionality of the software 
has been enhanced. 

2. Die Funktionalität der Software 
wurde erweitert. 

 
Word ‘functionality’ and ‘Funktionalität’ are 
translation token pairs, so are ‘software’ and 
‘software’, ‘enhanced’ and ‘erweitert’.  
 
The following is the algorithm of Translation 
Pairs Finder. 
 

for each A in L1 



 tokenize A 
 max_sim = 0 
 for each B in L2 
  Tokenize B 
  S = sim(A,B) 
  if s > max_sim then 
            max_sim = s 
            most_sim = B 
  Endif 
 Endfor 
 If max_sim > t then 
  output (A, B) 
 endif 
endfor 

 
 For a given text A in language L1, we first 
tokenize A and every B in language L2. We 
measure the similarity between A and every text 
B in language L2.  And then we find the B which 
is most similar to A, if the similarity between A 
and B is greater than a given threshold t, then A 
and B are declared a translation pair.  
sim(A, B) is defined as: 
 

A text in  tokensofNumber 

pairs  tokenon translatiofNumber 
),( =BAsim

 
The most straightforward way of finding 
translation token pairs is using a translation 
lexicon (each entry of a translation lexicon lists a 
word in language A and its translation in 
language B), whenever a pair of words in 
corresponding region of parallel text is an entry 
of the translation lexicon, the pair is considered a 
candidate translation token pair. 
For linguistically similar language pairs, such as 
French and English, candidate translation token 
pairs can also be found by looking for cognates 
in corresponding region of parallel text. For 
example, in the following two sentences: 
 

1. The functionality of the software has 
been enhanced. 

2. Die Funktionalität der Software wurde 
erweitert. 

 
‘functionality’ and ‘Funktionalität’ are cognates, 
‘software’ and ‘Software’ are cognates, they are 
considered as translation token pairs. 
For language pairs which share lots of cognates, 
such as French and English, Spanish and 
English, identifying cognates along will find 
enough candidate translation token pairs. For 
other language pairs, such as German and 

English, Chinese and English, translation 
lexicons are required. 
The cognates approach and translation lexicon 
approach can be used together to get a better 
performance. 
To find the real translation token pairs among 
candidates, we use distance-based model of 
translation equivalence. Thinking of tokens of 
text A and text B as two coordinates, as 
illustrated in Figure 1, if the position of a token 
in text A are too far away from the position of a 
token in text B, the token are unlikely to be real 
translation token pair. For example, the pair S in 
Figure 1. By setting a distance threshold d, we 
can rule out the false translation token pairs from 
candidates. 

 Figure 1. Distance-based model of 
translation equivalence. Candidate 
translation token pairs whose co-
ordinates lie in the shaded region 
count as real translation token pairs. 

 
Any translation token pair whose co-ordinate is 
closer than d would be considered a real 
translation token pair. The optimal value of 
threshold d varies with the language pair and the 
text genre. 
 
To improve the efficiency of the algorithm, 
before searching for translation token pairs, we 
compare the size of two files, the number of 
anchors (something that don’t change after being 
translated, such as numbers, acronyms, usually 
name of organizations, companies, such as IBM) 
and number of paragraphs to filter out 
impossible pairs. 



4 Evaluation 
The language identifier was trained to recognize 
13 languages: English, French, Spanish, German, 
Italian, Danish, Dutch, Danish, Swedish, 
Portuguese, Norwegian, Chinese and Japanese. 
The experiment shows that the language 
identifier is 100% accurate for text over 500 
bytes. 
 
To measure the accuracy of the translation pair 
finder, we hand picked 300 German pages and 
300 English pages from 10 websites, the smallest 
page is 686 bytes, the largest 32,386 bytes. We 
found 240 translation pairs manually. Then we 
ran the translation pair finder on the data. It 
found 235 translation pairs, 2 of which are 
wrong. Thus, according to the experiment, its 
recall and precision are 97.1% and 99.1% 
respectively. 
 
To measure the feasibility of the method, we ran 
the experiment on 30,000 .de domain websites. 
We used a German – English translation lexicon. 
It has 114,793 entries, 71,726 German words, 
including inflections. Both German and English 
stemmer were used in the experiments.  
Among 30,000 .de domain websites we picked 
randomly, 3,415 of them were identified as 
bilingual or multilingual websites. 
Because we’re only interested in sentences, so 
we extracted sentences from each page, and 
discarded other information, such as lists, tables, 
and so on. Also, to increase the accuracy of 
translation pairs finder, we threw away all the 
pages (contains only sentences) whose size is 
smaller than 500 bytes. 
We ran the experiment on 20 sparc stations 
during nights. It takes 10 days to complete the 
task. As a result, among 3,415 bilingual 
websites, 1,547 of them have more than 1,000 
bytes parallel text. The total amount of parallel 
text we get is 63 Meg bytes. 

5 Conclusion 
This paper presents the BITS, an automatic 
system which collects parallel text over the 
World Wide Web. We conducted several 
experiments on German-English pair. The 
experiment results are very encouraging. The 
method is simple, accurate, easy to port to other 
language pairs and quite efficient. The method 
could be a very successful way to collecting 
parallel text over the Web. 
 

6 Future Work 
There are some problems we should work on in 
the future: 
• Balanced web downloading. 
• Efficiency of translation pairs finder. 
• Html2text conversion. Webmasters designed 

their homepages in so many different ways, 
it results in the difficulty to clean them up 
and keep the sentences from being breaking 
up. This problem is important because it will 
affect the accuracy of automatic aligning 
process. 
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