
BITS: A Method for Bilingual Text Search over the Web

Xiaoyi Ma, Mark Y. Liberman
Linguistic Data Consortium
3615 Market St. Suite 200

Philadelphia, PA 19104, USA
{xma,myl}@ldc.upenn.edu

Abstract Parallel corpus are valuable
resource for machine translation, multi-
lingual text retrieval, language education
and other applications, but for various
reasons, its availability is very limited at
present. Noticed that the World Wide
Web is a potential source to mine parallel
text, researchers are making their efforts
to explore the Web in order to get a big
collection of bitext. This paper presents
BITS (Bilingual Internet Text Search), a
system which harvests multilingual texts
over the World Wide Web with virtually
no human intervention. The technique is
simple, easy to port to any language pairs,
and with high accuracy. The results of the
experiments on German – English pair
proved that the method is very successful.

1 Introduction
Large parallel corpus was proved to be extremely
useful for research in multilingual natural
language processing and language teaching, such
as statistical machine translation [Brown1990]
[Melamed1998], cross-lingual information
retrieval [Davis&Dunning1995]
[Landauer&Littman1990] [Oard1997], lexical
acquisition [Gale&Church1991a]
[Melamed1997].
However, due to fees and copyright restrictions,
for all but relatively few language pairs, parallel
corpora are available only in relatively
specialized forms such as United Nations
proceedings [LDC], Canadian Parliament
debates [LDC], and religious text and software
manuals [Resnik&Melamed1997]. The available
parallel corpuses are not only in relatively small
size, but also unbalanced.
Lack of large parallel corpus makes some
research in multilingual natural language
processing impossible, for example, the majority
of the machine translation researches are rule-

based, only a few are statistical machine
translation. Some scholars believe that the lack
of large parallel corpora makes statistical
approach impossible, the researchers don’t have
large enough parallel corpuses to give some
language pairs a shot.
However, the unexplored World Wide Web
could be a good resource to find large-size and
balanced parallel text. According to the web
survey we did in 1997, 1 of 10 de domain
websites are German – English bilingual, the
number of de domain websites is about 150,000
at that time, so there might be 50,000 German –
English bilingual websites in de domain alone.
Things are changing since a potential gold mine
of parallel text, the World Wide Web, has been
discovered. Researchers are making their efforts
to mine parallel text from the web [Resnik1998].

This paper presents a method for automatically
searching parallel text on the Web. It scans a list
of potential websites, finds the bilingual or
multilingual websites, downloads them, cleans
them up, finds pages which are translation pairs
and stores them in a database. The technique is
conceptually simple, easy to port to other
language pairs. We evaluated the system on
German – English language pair, the results
indicate that the method is accurate and efficient
enough to apply without human intervention.
Section 2 lays out the structure of BITS. Section
3 describes the translation pair finder in detail,
which is the core of the method. Section 4
presents the experiment results. Section 5
concludes the paper, and Section 6 discusses
future work.

2 The BITS Architecture
The BITS architecture is a simple pipeline.
Given a particular pair of languages of interest, a
candidate generation module generates a list of
websites which have a high possibility of being
bilingual of the given languages. Then, for each

website on the list, the website language
identifier will identify the language property of
the website. If it is not a bilingual or multilingual
website, then process next website on the list.
Otherwise, a web robot downloads all the htmls
and plain text files from the website recursively.
Afterwards, the htmls are converted to plain text
files. Next, a language identifier identifies the
language of each text file. Finally, a translation
pairs finder finds all the translation pairs and
stores them to a database.

2.1 Candidate Websites Generation
To generate a list of candidate websites, we
simply find all the websites in the domains
which have a high possibility of containing
parallel text for the given language pair.
According to a web survey we did in 1997, on
average, only 1 out of 1000 website is bilingual
or multilingual. However, if you focus on some
specific domains, you will discover some very
interesting fact, for instance, 1 out of 10 website
in de domain is German – English bilingual. This
is also reasonable for other domains, similarly,
ca domain websites are very possible to be
French – English bilingual.
Based on this assumption, we can generate the
candidate list easily. For example, for German –
English, de (Germany), au (Austria) and lu
(Luxembourg) domain could be a good start. For
each of the candidate domains, a list of all the
www servers can be obtained by querying some
DNS servers or by crawling the given domain.

2.2 Website Languages Identification
To identify whether a given website is
monolingual or multilingual, we look at pages of
the top 3 or 4 levels of the website. The language
identifier can identify the language of each page.
If there are more than one language used in the
top 3 or 4 level of a website, we assume the site
is at least bilingual. There are cases that a
website has pages of two languages but they are
not bilingual translations. However, assuming
they are bilingual won’t hurt.
Given a text file, language identifier tells in
which language (natural language) the text is
written.
Current language identification techniques
include small words technique and N-gram
technique [Grefenstette1995]. Either method
works well on long sentences (more than 20
words) and that N-gram is most robust for
shorter sentences. Both methods are easy to
implement. Using short words is slightly more
rapid in execution since there are less words than

there are N-grams in a given sentence, and each
sentence attribute contributes a multiplication to
the probability calculation.
In our application, we choose N-gram method.
It’s almost always true that a lot of web pages
contain only very short lists, not sentence,
especially for the top level pages. These short
lists barely contain short words by which the
language identifier used to identify a language,
so the short words method fails very often in
these cases. N-gram method is, however, still
robust in these cases.
The features of our language identifier include:
• Trainable:

The language identifier could be easily
trained on a specified set of languages. For
each language, 100K text is needed to train
the language identifier.

• Confidence feedback:
The language identifier should not only give
you the language of the text, but also the
confidence of the judgement. The reason
that this feature is important is that, you
can’t train the language identifier on all the
languages, the confidence gives you a
chance to tell whether the language is in the
training set. If the confidence is lower than a
given threshold, the language is
‘unidentified’.

2.3 Website Downloading
We use GNU Wget to retrieve web pages from a
remote website.
GNU Wget is a utility designed for retrieving
binary documents across the Web, through the
use of HTTP and FTP, and saving them to disk.
Wget is non-interactive, which means it can
work in the background, while the user is not
logged in. Analyzing server responses, it
distinguishes between correctly and incorrectly
retrieved documents, and retries retrieving them
as many times as necessary, or until a user-
specified limit is reached.
Wget supports a full-featured recursion
mechanism, through which you can retrieve large
parts of the web, creating local copies of remote
directory hierarchies. Wget understands the robot
exclusion standard1 – ‘/robots.txt’, used by
server administrators to shield parts of their
system from being scanned by web robots. Most
of the features of Wget are fully configurable,

1 See
http://info.webcrawler.com/mak/projects/robots/r
obots.html.

either through command line options, or via the
initialization file.
We only retrieve HTML files and plain text files
because we are only interested in texts. This
makes the retrieval very fast, since in general
text files are much smaller than image and audio
files.

2.4 HTML Cleanup and Language
Identification
The HTMLs are converted to plain text after they
are retrieved from remote website. The language
of each page is also identified by the language
identifier afterwards.
We noticed that very small files decrease the
accuracy of language identifier and the
performance of translation pairs finder. So, we
put a threshold (500 bytes in our experiment) on
the plain text files, i.e. if the size of the text file
is below the threshold, we throw it away.
This practice doesn’t effect the size of our
collection a lot, and we get the advantage of
more accurate prediction of translation pairs
which may benefit further research a lot.

3 Finding Translation Pairs
After the files are cleaned up and language of
each page is identified, we end up with two lists
of files, one for each language in the language
pairs we are interested in, say L1 and L2. The
problem remains is how to find translation pairs
among the two lists of files.

3.1 Overview
Possible approaches of finding translation pairs
include filename and path similarity comparison,
file makeup comparison, and content-based
similarity comparison. The filename and path
similarity approach basically compares the full
path (including file name) of a file A in L1 with
the full path (including filename) of a file B in
L2, if some degree of similarity exists between
the full path of A and the full path of B, it’s very
possible that file A and file B are mutual
translations of each other. For example, page
http://www.freezone.de/index_d.htm is more
likely to be the mutual translation of page
http://www.freezone.de/index_e.htm than
http://www.freezone.de/news/d_intro.htm, since
http://www.freezone.de/index_d.htm is more
similar to http://www.freezone.de/index_e.htm
than http://www.freezone.de/news/d_intro.htm
is. Considering full path as string, the similarity
measure of could be of edit distance of two
strings, such as the Levenshtein

[Levenshtein1965] distance and the Likeit
distance [Yianilos1993][Yianilos1997]. The
intuition here is that the webmasters tend to
name the files with similar names if they talk
about the same topic. However, the way a
webmaster designs a website could be various,
this makes the file name similarity based
approach very difficult to give an accurate
prediction of translation pairs. And, it happens
very often that the files which comment on the
same topic could be very much different, since
web page designer want to show different
viewers different aspects of a topic. This makes
things even worse.
The approach based on file makeup comparison
assumes that web designers make pages of the
same content in two languages the same
appearance. This is often true, but still it does not
work very well. It filters out pages which are
translations to each other but without a similar
appearance and accept some pairs which are not
mutual translations but with similar makeup. It
also fails when HTMLs do not have very much
makeup.
Human beings can recognize translations easily
because they have at least some degree of
knowledge about the languages. The more
language knowledge they have, more accurate
they can predict. Based on this observation, we
propose a content-based approach of finding
translation pairs, which understands the
languages in some degree.

3.2 Content-based Translation Pairs
Finder
If two texts are mutual translations,
corresponding regions of one text and its
translation will contain word token pairs that are
mutual translations. We call these token pairs
translational token pairs. For example, in
following two sentences, sentence 2 is the
German translation of sentence 1:

1. The functionality of the software
has been enhanced.

2. Die Funktionalität der Software
wurde erweitert.

Word ‘functionality’ and ‘Funktionalität’ are
translation token pairs, so are ‘software’ and
‘software’, ‘enhanced’ and ‘erweitert’.

The following is the algorithm of Translation
Pairs Finder.

for each A in L1

 tokenize A
 max_sim = 0
 for each B in L2
 Tokenize B
 S = sim(A,B)
 if s > max_sim then
 max_sim = s
 most_sim = B
 Endif
 Endfor
 If max_sim > t then
 output (A, B)
 endif
endfor

 For a given text A in language L1, we first
tokenize A and every B in language L2. We
measure the similarity between A and every text
B in language L2. And then we find the B which
is most similar to A, if the similarity between A
and B is greater than a given threshold t, then A
and B are declared a translation pair.
sim(A, B) is defined as:

A text in tokensofNumber

pairs tokenon translatiofNumber
),(=BAsim

The most straightforward way of finding
translation token pairs is using a translation
lexicon (each entry of a translation lexicon lists a
word in language A and its translation in
language B), whenever a pair of words in
corresponding region of parallel text is an entry
of the translation lexicon, the pair is considered a
candidate translation token pair.
For linguistically similar language pairs, such as
French and English, candidate translation token
pairs can also be found by looking for cognates
in corresponding region of parallel text. For
example, in the following two sentences:

1. The functionality of the software has
been enhanced.

2. Die Funktionalität der Software wurde
erweitert.

‘functionality’ and ‘Funktionalität’ are cognates,
‘software’ and ‘Software’ are cognates, they are
considered as translation token pairs.
For language pairs which share lots of cognates,
such as French and English, Spanish and
English, identifying cognates along will find
enough candidate translation token pairs. For
other language pairs, such as German and

English, Chinese and English, translation
lexicons are required.
The cognates approach and translation lexicon
approach can be used together to get a better
performance.
To find the real translation token pairs among
candidates, we use distance-based model of
translation equivalence. Thinking of tokens of
text A and text B as two coordinates, as
illustrated in Figure 1, if the position of a token
in text A are too far away from the position of a
token in text B, the token are unlikely to be real
translation token pair. For example, the pair S in
Figure 1. By setting a distance threshold d, we
can rule out the false translation token pairs from
candidates.

 Figure 1. Distance-based model of
translation equivalence. Candidate
translation token pairs whose co-
ordinates lie in the shaded region
count as real translation token pairs.

Any translation token pair whose co-ordinate is
closer than d would be considered a real
translation token pair. The optimal value of
threshold d varies with the language pair and the
text genre.

To improve the efficiency of the algorithm,
before searching for translation token pairs, we
compare the size of two files, the number of
anchors (something that don’t change after being
translated, such as numbers, acronyms, usually
name of organizations, companies, such as IBM)
and number of paragraphs to filter out
impossible pairs.

4 Evaluation
The language identifier was trained to recognize
13 languages: English, French, Spanish, German,
Italian, Danish, Dutch, Danish, Swedish,
Portuguese, Norwegian, Chinese and Japanese.
The experiment shows that the language
identifier is 100% accurate for text over 500
bytes.

To measure the accuracy of the translation pair
finder, we hand picked 300 German pages and
300 English pages from 10 websites, the smallest
page is 686 bytes, the largest 32,386 bytes. We
found 240 translation pairs manually. Then we
ran the translation pair finder on the data. It
found 235 translation pairs, 2 of which are
wrong. Thus, according to the experiment, its
recall and precision are 97.1% and 99.1%
respectively.

To measure the feasibility of the method, we ran
the experiment on 30,000 .de domain websites.
We used a German – English translation lexicon.
It has 114,793 entries, 71,726 German words,
including inflections. Both German and English
stemmer were used in the experiments.
Among 30,000 .de domain websites we picked
randomly, 3,415 of them were identified as
bilingual or multilingual websites.
Because we’re only interested in sentences, so
we extracted sentences from each page, and
discarded other information, such as lists, tables,
and so on. Also, to increase the accuracy of
translation pairs finder, we threw away all the
pages (contains only sentences) whose size is
smaller than 500 bytes.
We ran the experiment on 20 sparc stations
during nights. It takes 10 days to complete the
task. As a result, among 3,415 bilingual
websites, 1,547 of them have more than 1,000
bytes parallel text. The total amount of parallel
text we get is 63 Meg bytes.

5 Conclusion
This paper presents the BITS, an automatic
system which collects parallel text over the
World Wide Web. We conducted several
experiments on German-English pair. The
experiment results are very encouraging. The
method is simple, accurate, easy to port to other
language pairs and quite efficient. The method
could be a very successful way to collecting
parallel text over the Web.

6 Future Work
There are some problems we should work on in
the future:
• Balanced web downloading.
• Efficiency of translation pairs finder.
• Html2text conversion. Webmasters designed

their homepages in so many different ways,
it results in the difficulty to clean them up
and keep the sentences from being breaking
up. This problem is important because it will
affect the accuracy of automatic aligning
process.

Acknowledgments
We are grateful to Chris Cieri, Zhibiao Wu,
David Graff for useful discussions.

Reference:
Brown, P., Cocke, J., Della Pietra, S., Della
Pietra, V., Jelinek, F., Mercer, R., & Roosin, P.
(1990). “A statistical approach to machine
translation”. Computational Linguistics, 16(2),
79-85.
Church, K.W., & Mercer, R. (1993).
“Introduction to the special issue on
computational linguistics using large corpora”,
Computational Linguistics, 19(1), 1-24.
Davis, M., & Dunning, T. (1995). “A TREC
evaluation of query translation methods for
multi-lingual text retrieval”. Fourth Text
Retrieval Conference (TREC-4). NIST.
Dunning. T. (1994). “Statistical identification of
language”. Computing Research Laboratory
technical memo MCCS 94-273, New Mexico
State University Las Cruces, New Mexico.
Gale, W. A., & Church, K. W. (1991a).
“Identifying word correspondences in parallel
texts”. Fourth DARPA Workshop on Speech and
Natural language, Asilomar, California.
Gale, W. A., & Church, K. W. (1991b). “A
program for aligning sentences in bilingual
corpora”. Proceedings of the 29th Annual
Meeting of the Association for Computational
Linguistics, Berkeley, California.
Grefenstette, G. (1995). “Comparing two
language identification schemes”. Proceedings of
the 3rd International Conference on the Statistical
Analysis of Textual Data (JADT’95), Rome,
Italy.
http://www.rxtc.xerox.com/research/mltt/Tools/g
uesser.html.
Landauer, T. K., & Littman, M. L. (1990). “Fully
automatic cross-language document retrieval
using latent semantic indexing”. Proceedings of

the Sixth Annual Conference of the UW Centre
for the New Oxford English Dictionary and Text
Research, pp. Pages 31-38, UW Centre for the
New OED and Text Research, Waterloo,
Ontario.
LDC (1999). Linguistic Data Consortium (LDC)
home page. http://www.ldc.upenn.edu/.
Levenshtein, V. I.(1965). “Binary codes capable
of correcting spurisou insertions and deletions of
one” (original in Russian). Russian Problemy
Peredachi Informatsii, 1:12-25.
Melamed, I. D. (1996). “A geometric approach
to mapping bitext correspondence”. Conference
on Empirical Methods in Natural Language
Processing, Philadelphia, Pennsylvania.
Melamed, I. D. (1997). “Automatic discovery of
noncompositional compounds in parallel data”.
Proceedings of the 2nd Conference on Empirical
Methods in Natural Language Processing
(EMNLP-97), Brown University.
Melamed, I. D. (1998). “Word-to-word models
of translation equivalence”. IRCS technical
report #98-08, University of Pennsylvania.
Oard, D. W. (1997). “Cross-language text
retrieval research in the USA. Third DELOS
Workshop”. European Research Consortium for
Informatics and Mathematics.
Resnik, P., & Melamed, I. D. (1997). “Semi-
automatic acquisition of domain-specific
translation lexicons”. Fifth Conference on
Applied Natural Language Processing,
Washington, D.C.
Resnik, P., Olsen, M. B., & Diab, M. (1998).
“The Bible as a parallel corpus: Annotating the
‘Book of 2000 Tongues’”.
Yianilos, Peter (1993). Data structures and
algorithms for nearest neighbor search in general
metric spaces. Proceedings of the 4th ACM-
SIAM Symposium on Discrete Algorithms, pp.
311-321.
Yianilos, Peter (1997). “The Likeit intelligent
string comparison facility”. Technical Report 97-
093, NEC Research Institute.

