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Abstract 
Two variants of primary progressive aphasia (PPA) are subtypes of frontotemporal degeneration (FTD), which is the most common type 
of dementia among individuals under 60 years of age. Semantic variant PPA (svPPA) patients present with semantic deficits in single 
word use, whereas nonfluent/agrammatic PPA (naPPA) patients produce simplified speech with frequent speech errors and slow speech 
rates. In this study, we built machine learning systems to classify PPA patients (n=63) and healthy elderly controls (n=36). We 
automatically extracted 18 lexical and 21 acoustic features with a natural language processing library and a speech activity detector, and 
we trained classifiers, experimenting with various feature selection and reduction techniques. Our models showed high accuracy, 
correctly distinguishing patients from controls in more than 90% of cases, svPPA patients from naPPAs in about 89% of cases, and 
controls, svPPA, and naPPA patients in more than 80% of cases. Our results show that classification of PPA patients using automatically 
derived linguistic features from digitized speech samples is highly promising, and could potentially be applied in community settings 
for prescreening. We plan to extend this project by including more features and additional FTD subgroups in the near future.  
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1. Introduction 
Frontotemporal degeneration (FTD) is a type of focal 
dementia caused by atrophy in the brains’ frontal and 
temporal lobes. It is the most common type of 
neurodegenerative disease among people under 60 years of 
age (Ratnavalli et al., 2002). Since individuals diagnosed 
with FTD are relatively young, usually still in the 
workforce, the personal and societal costs of the disease are 
substantial. For example, FTD diagnosis often results in 
early departure from the workforce, increasing economic 
burden for a household with an FTD patient and negatively 
affecting not only patients but also the quality of life of 
their families (Galvin et al., 2017). Because there are no 
disease-modifying drugs approved for FTD, earlier 
screening and slowing the apparent disease progression rate 
through behavioral adjustments to the environment are key 
to helping patients and their families. This paper proposes 
three machine learning systems to automatically classify 
two subgroups of FTD that could potentially be applied in 
prescreening. 

About half of patients with FTD present with a 
linguistic impairment known as primary progressive 
aphasia (PPA), and sometimes this can be accompanied by 
a social-behavioral impairment known as behavioral 
variant FTD (bvFTD). There are several variants of PPA. 
Among these subgroups, semantic variant PPA (svPPA) 
patients are characterized by impaired confrontation 
naming, frequent substitution of pronouns for nouns, and 
difficulty in processing concrete words, although they 
show intact prosody and syntax (e.g., Amici et al., 2007; 
Bonner et al., 2016; Cousins et al., 2016; Nevler et al., 
2019). Nonfluent/agrammatic PPA (naPPA) patients, on 
the other hand, present with effortful speech, slow speech 
rates, frequent speech errors, simplified grammar, and 
difficulty in retrieving verbs (e.g., Ash et al., 2009; 
Grossman et al., 1996; Rhee et al., 2001). Patients with 
either of the two subtypes have frontotemporal lobar 

degeneration spectrum pathology, which is commonly 
associated with misfolding of TDP-43 or tau proteins.  
 Since PPA patients show salient linguistic 
characteristics, we would expect automatic classification 
by means of linguistic features to yield high levels of 
accuracy. There are a few previous studies that have 
pursued this approach. Fraser et al. (2014) extracted 58 
lexical and semantic features from the speech samples of 
10 svPPA and 14 naPPA patients and 16 controls. The 
authors trained classifiers only with significant features for 
three different tasks: control versus svPPA, control versus 
naPPA, and svPPA versus naPPA. Their models for 
controls versus svPPA/naPPA showed high levels of 
accuracy, from 90% to 100%. However, their best 
performance for classifying svPPA and naPPA patients was 
only 79.2% accurate, suggesting that classifying patient 
groups is more difficult than distinguishing patients from 
controls. Peintner et al. (2008) extracted 41 acoustic, 81 
LIWC (Language Inquiry and Word Count; Pennebaker et 
al., 2001), and 11 lexical features from 39 participants (9 
bvFTD, 8 naPPA, 13 svPPA, and 9 controls), and trained 
classifiers for various classification tasks. Their composite 
feature set (significant features from each feature set) 
showed accuracy over 90% in most classification tasks, 
except control versus bvFTD and four-way classification. 
However, they did not list what features were used in the 
composite set, making it difficult to reproduce their results. 
Themistocleous et al. (2019) extracted 14 acoustic features, 
such as mean fundamental frequency and amplitude 
differences between the first and second harmonics, from 
50 patients (17 logopenic variant PPA (lvPPA), 14 svPPA, 
11 naPPA, and 8 naPPA with apraxia of speech) and trained 
classifiers with 3-fold group cross validations and a one-
against-all strategy. Their models correctly identified 
naPPA 82% of the time and svPPA 66% of the time. The 
authors only used acoustic features, which explains why the 
accuracy of svPPA patients, who rarely show impairments 
in prosody, was relatively low. More importantly, all 
previous studies have had relatively small datasets, raising 
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the question of whether their results could be generalized 
to larger datasets. In this paper, we studied 99 participants 
(63 patients and 36 controls) to investigate whether lexical 
and acoustic features could predict the diagnostic status of 
the participants.   

2. Objectives 
Our objectives were to train three predictive models for 
classifying (1) controls vs. patients, (2) svPPA vs. naPPA 
patients, and (3) controls, svPPA and naPPA patients, 
experimenting with different feature selection and 
reduction techniques, and to identify predictive features for 
classifying PPA patients.   

3. Methods 
3.1 Participants 
Our participants consisted of 63 patients diagnosed 
clinically with either svPPA or naPPA and 36 healthy 
elderly controls. Forty-two of the 63 patients had svPPA 
and 21 were naPPA patients. The patients were diagnosed 
by experienced neurologists at the Department of 
Neurology of the Hospital of the University of 
Pennsylvania in accordance with published criteria (Gorno-
Tempini et al., 2011). Of the 42 svPPA patients, 32 showed 
concomitant mild behavioral symptoms, which is a 
common co-occurrence in this group. We focused on 
frontotemporal lobar degeneration (FTLD) spectrum 
pathology in this study, and so we did not include lvPPA 
patients, who most often have Alzheimer’s pathology. Our 
participants were matched on sex ratio and education 
levels, but not on age, because naPPA patients on average 
have an later disease onset than svPPA patients (Johnson et 
al., 2005). The patient groups did not differ on the Mini 
Mental State Exam scores (MMSE) or disease durations, 
but they significantly differed on the Boston Naming Test 
(BNT) scores, which is expected due to svPPA patients’ 
difficulty in naming tasks. All participants were native 
speakers of English. The study was approved by the 
Institutional Review Board of the Hospital of the 
University of Pennsylvania, and all participants signed a 
written consent form. Participants’ demographic and 
neuropsychological characteristics are summarized in 
Table 1.  

 controls svPPA naPPA p-value 
Age  68.5 (7.9) 63.3 (6.9) 70.4 (9.4) 0.001 
Sex 23 F/13 M 23 F/19 M 11 F/11 M 0.483 
Education 
(years)  

15.9 (2.5) 15.1 (2.8) 15.3 (3.1) 0.408 

MMSE 
(range: 0-30) 

29.2 (1) 22.1 (6.3) 22.7 (5.9) < 0.001 

BNT  
(range: 0-30) 

27.9 (2.5) 7.5 (6.4) 24.7 (4.6) < 0.001 

Disease 
duration (yrs) 

NA 3.9 (2) 3.2 (1.9) 0.214 

Total number 
of words in 
Cookie Theft 

174.4 
(66.4) 

148.1 
(62.8) 

91.0 (55.8) < 0.001 

Table 1: Mean (SD) demographic and neuropsychological 
characteristics of the participants. MMSE: Mini Mental 

State Exam, BNT: Boston Naming Test. 

3.2 Data 
The Cookie Theft picture from the Boston Diagnostic 
Aphasia Examination (Goodglass et al., 1983) was used to 
elicit narrative speech from the participants. Participants 
described the picture for about one minute, and their 
descriptions were digitally recorded. Some patients made 
several recordings, but we used the earliest recording of 
each participant in this analysis in order to differentiate 
among the conditions early in the disease course. An expert 
linguist generated verbatim transcription of the picture 
descriptions, including all non-verbal speech, hesitations 
and false starts, and a team of trained annotators at the 
Linguistic Data Consortium (LDC) of the University of 
Pennsylvania reviewed and revised the annotations for 
quality checking.  

4. Feature Extraction 
4.1 Lexical Features 
We ran a POS tagger in spaCy (Honnibal & Johnson, 2015) 
to automatically tag POS categories of all words that the 
participants produced in the picture descriptions. Before 
running the tagger, we cleaned the transcripts by removing 
interviewers’ prompts and annotations for non-verbal 
speech. A professional linguist manually validated the 
accuracy of spaCy with a subset of our data (n=21). The 
mean group accuracy varied from 95% (controls) to 90% 
(PPAs). There was no significant difference in the accuracy 
among patient groups (p>0.05). Since the accuracy of the 
spaCy POS tagger with their basic model 
(‘en_core_web_sm’) was high, we did not train a POS 
tagger separately in this study. The POS tokens were tallied 
per participant, and the count of each POS category per 100 
words was calculated (= (raw counts/total number of 
words) * 100). In addition to the frequency of each POS 
category, we measured the number of tense-inflected verbs 
and unique nouns per 100 words. We summed the number 
of modal auxiliary verbs, past tense verbs and present tense 
verbs that spaCy tagged to count the number of tense-
inflected verbs per 100 words. The number of noun lemmas 
was used for the number of unique nouns per 100 words.   
 We also rated nouns that participants produced for 
concreteness (Brysbaert et al., 2014), semantic ambiguity 
(Hoffman et al., 2013), word frequency (Brysbaert & New, 
2009), age of acquisition (AoA; Brysbaert et al., 2018) and 
word familiarity (Brysbaert et al., 2018) for their potential 
to distinguish svPPA patients from others. Since the 
published norms we used had a limited number of words, 
we rated the lemma of a noun if a noun itself was not listed 
in the published norms. A noun was not rated if neither the 
noun nor its lemma was listed in the norms. In total, we had 
18 text-related features: POS counts per 100 words (nouns, 
verbs, adjectives, adverbs, prepositions, determiners, 
conjunctions, interjections, pronouns, and speech 
errors/partial words—[X] in spaCy), number of tense-
inflected verbs and unique nouns per 100 words, lexical 
features of nouns (concreteness, ambiguity, frequency, 
AoA, familiarity), and total number of words.   
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4.2 Acoustic Features 
We used an in-house Gaussian Mixture Models-Hidden 
Markov Models based Speech Activity Detector (SAD) 
developed at the LDC to segment the recordings into 
speech and silent pause segments. We set the minimum 
duration of a speech segment at 250 ms and that of a silence 
segment at 150 ms. We reviewed the outputs of SAD, 
corrected wrong segmentations, and excluded 
interviewers’ speech and non-verbal speech segments. 
Using the durations of speech and silent pause segments, 
we extracted 12 durational features:  

• The mean duration of speech and pause segments 
• The number of total pauses and speech segments 
• Total speech time (speech only) 
• Total pause time (pause only) 
• Total time (speech time + pause time) 
• Sample duration (duration of the entire recording) 
• Percent of speech time of the total time 
• Breath frequency (= number of pauses over total 

time) 
• Speech frequency (= number of speech segments 

over total time) 
• Pause rate per minute (= number of pauses over 

total speech time) 

 We also pitch-tracked speech segments of the 
participants with a script in Praat (Boersma & Weenink, 
2020) and extracted the 10th to 90th fundamental frequency 
(f0) percentile values for each speaker. To minimize 
individual differences in pitch due to physiological factors, 
such as sex, height, and the size of the larynx, the extracted 
f0 values in Hz were converted to semitones (St) using each 
speaker’s 10th percentile as a baseline: St = log2(Hz / 10th 
percentile)*12. We had 21 acoustic features in total, 
including pitch percentile values along with the 12 
durational features. The final feature set included 18 lexical 
and 21 acoustic features and 3 demographic characteristics 
of the participants: age, sex, and education level.  

5. Model Training 
We trained two different machine learning algorithms from 
the scikit-learn package (Pedregosa et al., 2011) in Python: 
Random Forest and Support Vector Machine (SVM) 
classifiers.  In all models, we imputed missing values with 
a mean value using SimpleImputer and standardized 
features with StandardScaler in scikit-learn for effective 
learning. We performed leave-one-out cross-validation 
(CV) to evaluate the generalizability of the models and 
reported the average accuracy of all CV folds.  
 We experimented with feature selection and reduction 
methods. For feature selection, we performed t-tests (for 
binary classifications) and trained models with features that 
were significant at the level of p < 0.05, 0.01, 0.005, and 
0.001. We used the same feature set used in the control-
patient pairwise classification for the three-way 
classification (control vs. svPPA vs. naPPA). We compared 
the performance of models trained with selected features 
and a model without any feature selection. For feature 
reduction, we performed Principal Component Analysis 
(PCA) and trained models, varying the number of 
components from 1 to 10. We compared the performance 
of models trained with PCA components and that of a 

model trained without any feature reduction and reported 
the best performance after tuning hyperparameters.  

6. Classification Results 
6.1 Binary Classification between Controls and 

Patients 
 
An SVM classifier trained with all features which were 
reduced to 10 PCA components performed best in this 
classification task, showing 90.9% accuracy and 0.94 area 
under the curve (AUC). Our model correctly identified 33 
controls out of 36 and 57 patients out of 63. The full 
classification report is shown in Table 2, and the receiver 
operating characteristic (ROC) curve for this contrast is 
provided in Figure 1. 
 
 Accuracy Precision Recall F1-score 
Controls  0.92 0.85 0.92 0.88 
Patients 0.90 0.95 0.90 0.93 
Weighted average  0.91 0.91 0.91 0.91 

 
Table 2: Classification report of the SVM classifier for the 

classification of patients and controls. 

 
Figure 1: Receiver Operator Characteristic Curve for the 

classification of controls and patients.  
 

6.2 Binary Classification of Patient groups 
A Random Forest classifier trained with features that were 
significant at the level of p<0.005 and reduced to three PCA 
components performed best in this classification task. The 
model showed 88.9% accuracy with 0.87 AUC. The model 
correctly identified 40 svPPA patients out of 42 and 16 
naPPA patients out of 21. Our model resulted in a higher 
F1-score for classifying svPPA patients (0.92) than naPPA 
patients (0.82), suggesting that in general identifying 
naPPA patients was more difficult than identifying svPPA 
patients. The full classification scores are in Table 3, and 
the ROC curve for this contrast is provided in Figure 2.  
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 Accuracy Precision Recall F1-score 
svPPA 0.95 0.89 0.95 0.92 
naPPA 0.76 0.89 0.76 0.82 
Weighted average  0.89 0.89 0.89 0.89 

 
Table 3: Classification report of the Random Forest 
classifier for the classification of svPPA and naPPA 

patients. 
 

 
Figure 2: Receiver Operator Characteristic Curve for the 

classification of svPPA and naPPA patients. 
 

 The features that were selected included counts of 
nouns, pronouns, verbs, tense-inflected verbs, speech 
errors/partial words, unique nouns per 100 words; 
concreteness, semantic ambiguity, frequency of nouns; 
participants’ age and total number of pauses. Figure 3 
shows group differences in the selected features.  
 

Figure 3: Group differences in selected features for the 
classification of svPPA and naPPA patients. The POS 
counts and the numbers of tense-inflected verbs and 

unique nouns are per 100 words. The top two rows show 
features where values of naPPA patients are significantly 

higher than those of svPPA and the bottom two rows 
show features where values of svPPA patients are 

significantly higher than those of naPPA (both at 
p<0.005).  

 
Among the 11 selected features, most were lexical, and 
only one acoustic feature, total number of pauses, was 
selected. As expected, semantic aspects of nouns that 
patients produced, such as concreteness and semantic 
ambiguity, were important features in distinguishing 
svPPA patients from naPPA patients. Further discussion of 
the acoustic features in PPA patients can be found in Nevler 
et al. (2019), and further discussion of the lexical features 
can be found in Cho et al. (under review).  
 

6.3 Three-way Classification 
 

An SVM classifier trained with all features without any 
feature reduction performed best for the three-way 
classification, yielding 80.8% accuracy with 0.9 macro-
averaged AUC. The model correctly identified 32 controls 
out of 36, 34 svPPA patients out of 42, and 14 naPPA 
patients out of 21. The model’s F1-score is high for controls 
and svPPA patients (> 0.8), but it was below 0.7 for naPPA 
patients, again suggesting that naPPA patients were 
difficult to identify. The full classification report and the 
confusion matrix are provided in Tables 4 and 5, and the 
ROC curve for this contrast is provided in Figure 4. 

Figure 4: Receiver Operator Characteristic Curve for the 
classification of controls and svPPA and naPPA patients. 

 
 Accuracy Precision Recall F1-score 
Control  0.89 0.84 0.89 0.86 
svPPA 0.81 0.83 0.81 0.82 
naPPA  0.67 0.70 0.67 0.68 
Weighted average 0.81 0.81 0.81 0.81 

 
Table 4: Classification report of the SVM classifier for the 

three-way classification. 
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 Control svPPA naPPA 
Controls  32 2 2 
svPPA 4 34 4 
naPPA  2 5 14 

 
Table 5: Confusion matrix of the three-way classification 

(column: actual, row: predicted). The number of 
accurately classified participants is highlighted in gray. 

 

7. Discussion and Conclusion 
This paper reports the results of automatic classification 
systems for three classification tasks: i) control versus 
patients, ii) svPPA versus naPPA patients, and iii) control 
versus svPPA versus naPPA. We automatically extracted 
18 lexical features from one-minute narrative speech 
samples using spaCy, one of the most modern, state-of-the-
art natural language processing libraries in Python. We also 
automatically extracted 21 acoustic and durational features 
with SAD. Using these features with additional 
demographic information, we trained three machine 
learning classifiers, experimenting with different feature 
selection and reduction techniques, and used leave-one-out 
cross-validation. We found group differences in the 
selected features. Our model for the control versus patient 
classification trained with all features, which were reduced 
to 10 PCA components, correctly distinguished patients 
from controls in more than 90% of cases. Our classifier for 
the svPPA versus naPPA task selected 11 features (9 
lexical, 1 acoustic and 1 demographic), which were later 
reduced to 3 PCA components. Our classifier correctly 
identified the diagnostic group of the patients with 88.9% 
accuracy, which outperformed the system for the same task 
in previous studies (79.2% in Fraser et al., 2014; 82% for 
naPPA patients in Themistocleous et al., 2019). Lastly, our 
system for the three-way classification, which was trained 
with all features without any feature reduction, showed 
high overall accuracy (over 80%) in classifying controls, 
svPPA and naPPA patients, which is much higher than the 
chance level (33.3%). The performance of the systems in 
this report is highly promising in that we only had one-
minute narrative speech samples, which are quick and easy 
to collect. We believe that this line of research could 
potentially benefit populations with the earliest features of 
PPA.  

 Our models performed well, but there is still room for 
improvement, in particular, for the three-way classification 
system, where classification of naPPA was < 80%. In the 
future, we plan to include more features, such as letter or 
category fluency scores, Mel-frequency cepstral 
coefficients, or word frequency as log-odds ratio (Monroe 
et al., 2008) to improve the performance of the models. We 
also aim to extend our research by including more patient 
groups. First, we would consider evaluating patients with 
lvPPA, which is another variant of PPA associated with 
Alzheimer’s disease pathology, with frequent filler words 
(um or uh) as a prominent feature. Second, we would 
consider including bvFTD patients, who have pathology 

similar to that of svPPA and naPPA patients. Although 
without obvious aphasia, these patients do have subtle 
speech deficits (Nevler et al., 2018). In addition, we plan to 
collect conversational data in the near future to explore 
subtle group differences among these patient groups that 
may not have been captured in monologue, narrative 
speech samples. In natural conversation, speakers employ 
a variety of prosodic features to deliver the intended 
message effectively. We believe these additional features 
will improve the models’ performance. 
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