
In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010).
1

Consistent and Flexible Integration of Morphological Annotation
in the Arabic Treebank

Seth Kulick, Ann Bies, Mohamed Maamouri
Linguistic Data Consortium

University of Pennsylvania

3600 Market Street, Suite 810

Philadelphia, PA 19104 USA

E-mail: {skulick,bies,maamouri}@ldc.upenn.edu

Abstract

Complications arise for standoff annotation when the annotation is not on the source text itself, but on a more abstract representation.

This is particularly the case in a language such as Arabic with morphological and orthographic challenges, and we discuss various

aspects of these issues in the context of the Arabic Treebank. The Standard Arabic Morphological Analyzer (SAMA) is closely

integrated into the annotation workflow, as the basis for the abstraction between the explicit source text and the more abstract token

representation. However, this integration with SAMA gives rise to various problems for the annotation workflow and for maintaining

the link between the Treebank and SAMA. In this paper we discuss how we have overcome these problems with consistent and more

precise categorization of all of the tokens for their relationship with SAMA. We also discuss how we have improved the creation of

several distinct alternative forms of the tokens used in the syntactic trees. As a result, the Treebank provides a resource relating the

different forms of the same underlying token with varying degrees of vocalization, in terms of how they relate (1) to each other, (2) to

the syntactic structure, and (3) to the morphological analyzer.

1. Introduction

The Arabic language presents several challenges for both

annotation and natural language processing. This is in

part due to its morphological characteristics, in which

multiple units of meaning are combined together in a

single whitespace-delimited token from the source text,

which we call here a “source token.” For example, a

source token such as “ktbh”1 آ����������� might be analyzed as

two parts, in which the “ktb” is a noun meaning “books”

and “h” is a possessive pronoun. There are many reasons

why it is important to be able to refer to these individual

components separately, such as using them as leaves in a

tree structure for syntactic annotation, or for word

alignment with another language, such as English, in

which the noun and possessive pronoun (in this case)

would already be separate tokens.

Another reason why Arabic is a particular challenge is the

orthographic convention of leaving out short vowels and

other distinguishing marks in written text. This causes a

great increase in ambiguity for resolving the analysis of

each source token, as has long been noted for natural

language processing. However, perhaps less noted has

been the fact that this also raises many issues for

annotation projects that analyze Arabic text from the

source tokens to a full analysis including morphological

analysis and syntactic structure. The tree structure is built

not upon the source tokens, but rather on a more abstract

representation, not explicitly present in the original text.

1 Throughout this paper we use the Buckwalter transliteration

http://www.qamus.org/transliteration.htm

This more abstract representation includes the

morphological analysis and the separation of the source

tokens into multiple parts, if necessary. These multiple

levels of representation must all be related to each other

throughout the annotation and in the end product,

allowing corrections at one level to flow back to previous

levels.

These issues apply to treebanks more generally. For any

treebank in which the annotation is not on the explicit

source text, but on some more abstract, articulated

representation, similar issues will arise in some form.

Even for a morphologically simple language such as

English, this problem arose with the Penn Treebank, with

the segmentation of “won’t” into “wo” and “n’t” (Bies et.

al., 1995). The tree annotation continued as if the former

was really “will”, although the lexical item was not

explicitly “normalized” to “will”. In that case such

needed abstractions from the data were limited enough so

that the entire problem of carefully defining what the

object of annotation was, and how it related to the source

data, could be side-stepped. In other languages, however,

this is not possible, when such abstractions are more

pervasive.

These multiple levels of representation in turn become

research topics for natural language processing. Given

multiple levels of representation to be recovered, such

research is concerned with the question of what is the

most appropriate way to partition the work in a pipeline to

recover the data. It is not necessarily the case that the

same partition of the work as is done in the annotation is

appropriate for NLP pipelines. For example, while the

2

annotation project might build the syntactic structure on

top of the more abstract, fully morphologically analyzed

representation of the leaf tokens, users may wish to move

from the original text to a more limited analysis, sufficient

for the tree annotation. It is again therefore crucial that

the annotation project make available the multiple levels

of representation of the tokens in a consistent and

accessible way so that NLP pipelines can constructively

take advantage of this information.

Similarly, any treebank which utilizes a morphological

analyzer to mediate between the source text and the more

abstract representations needed for annotation must

consider the proper way to maintain the linkage, and what

to do if such an analyzer is not complete.

In this paper we discuss these issues in the context of the

annotation in the Arabic Treebank at the Linguistic Data

Consortium (Maamouri, Bies & Kulick 2009) (ATB).

The ATB closely integrates the Standard Arabic

Morphological Analyzer 2 (SAMA) into the annotation

procedure, in which the morphological analysis for a

token in the Treebank is selected from among the SAMA

alternative solutions for that token. The ATB release

provides, in addition to the syntactic structure, valuable

data for machine learning experiments on the problem of

relating a source text token to the correct morphological

analysis, mediated through the list of possible SAMA

solutions.

However, in earlier releases of the ATB there have been

two problematic aspects to this interaction between the

Treebank and SAMA:

1. The Treebank contained tokens that had no

SAMA solution, or a solution inconsistent with

SAMA. This caused problems both for the

annotation workflow, which required

morphological analysis before the syntactic

annotation could proceed, and also in the final

product, which had an undetermined amount of

inconsistency with SAMA solutions.

2. While the Treebank provides, as a result of the

integration with SAMA, vocalized solutions for

each token, users may also want to use variants

of these tokens with differing degrees of

vocalization that more directly relate to the

original source text. While such forms have

been provided in the past, their definitions were

not clear and included systematic errors.

In this paper we describe a number of changes to our

workflow that solve these problems.

Regarding the first problem, tokens that cannot be

annotated with a SAMA solution now receive one of two

2 Standard Arabic Morphological Analyzer (SAMA) Version 3.1.

LDC Catalog Number: LDC2009E73.

new types of entries, which is either an analysis parallel to

one already included in SAMA or a minimal analysis

sufficient to allow clitics to be split and syntactic

annotation to proceed. In addition, the interaction

between SAMA and the Treebank is now evaluated

throughout the workflow, so that the link between the

Treebank and SAMA is as consistent as possible.

As a result, we are now able to include information

making precise the consistency of each token in the

Treebank with SAMA. We expect that making such

information explicit at the token level will be of great

value for researchers working on the problem of

determining the morphological analysis for a source token.

This aspect of the work is discussed in Section 3.

For the second problem, we are now providing explicit

variants of each vocalized token which include differing

degrees of vocalization that more directly relate to the

original text. The two such alternative forms of the tokens,

“UNVOCALIZED” and “INPUT_STRING,” were

previously not clearly defined and contained numerous

errors. To address this issue, we have implemented a new

step at the end of the annotation process which addresses

the problem of partitioning a source token into

subsequences based on the vocalized tokens arising from

that source token. Section 4 describes our solution to this

problem.

2. Background Information on ATB Tokens

There are two main parts to the Arabic Treebank

annotation that affect the form of the tokens.

1. The source text is broken up into roughly

whitespace delimited tokens, called the “source

tokens.” These are the tokens that are run

through SAMA, resulting in a vocalized form.

2. These source tokens are split apart if appropriate

during annotation (prepositional clitics, direct

object clitics, etc.). These tokens will be referred

to as the “tree tokens,” since these are the tokens

actually used for syntactic analysis.

For all of the source tokens that receive solutions from

SAMA, the syntactic annotation takes place on a partition

of this solution from SAMA. The solution from SAMA is

a sequence of segments, each including

[vocalization, Part-of-Speech, gloss]

information, and the sequence of such segments is

partitioned into one or more tree tokens that together

correspond to the original source token.

For example, the original source token “ktbh” آ������������ has

the following SAMA solution:

3

• [kutub, NOUN, books]

• [i, CASE_DEF_GEN, def.gen]

• [hi, POSS_PRON_3MS, its/his]

The source token has received an analysis in which it has

three morphological segments (one on each line here),

and each segment has a vocalization (first component),

part-of-speech tag (second component), and gloss (third

component).

This then is the result of the “POS/morphological” level

of analysis and annotation. For the syntactic annotation,

this solution is partitioned into two tokens:

• [kutub+i,

NOUN+CASE_DEF_GEN,

books+def.gen.]

 آُُ��
• [hi, POSS_PRON_3MS, its/his]

	ِ

The reason for this is that it is these two tree tokens that

contain the syntactic/semantic material appropriate for

tasks such as annotation syntactic structure or word

alignment. Roughly speaking, segments consisting of

only inflectional material (such as the definite genitive

marker here) do not become tree tokens on their own.

Annotation work with these tokens after this point within

the Treebank references these vocalized forms of the

tokens. That is, the syntactic structure uses “kutub+i” as a

token and “hi” as a token. This is because these are the

forms that are output from SAMA, and available for

further annotation.

2.1 Token-Related Field Definitions

This data is represented in the Treebank in several ways,

due to the different levels of annotation. In particular,

there are text files listing the tokens at the two different

levels of annotation, but with information relating one to

the other. We call these two different text files here the

“pos-level” and “treebank-level.”3

For example, the “pos-level” file would have for the

above example:

3 In the actual release these files are called, somewhat

awkwardly, “before-treebank” and “after-treebank.”

 INPUT_STRING: آ������������
 IS_TRANS: ktbh

 INDEX: P22W10

 OFFSETS: 42-46

 TOKENS: P22W13-P22W14

 STATUS: 1

 LEMMA: [kitAb_1]

 UNSPLITVOC: (kutubihi)

 POS: NOUN + CASE_DEF_GEN

 +POSS_PRON_3MS

 VOC: kutub+i+hi

 GLOSS: books + [def.gen.]

 +its/his

INPUT_STRING is the actual Arabic in utf-8, and

IS_TRANS is the Buckwalter transliteration of that

Arabic, used throughout the Treebank. 4 INDEX is a

simple paragraph/word index to the token (paragraph 22,

word #10). LEMMA (a lemma for the source token,

assigned by SAMA) and UNSPLITVOC are two

additional pieces of information provided by SAMA,

which are not the concern of this paper and so are not

further discussed here. STATUS is explained in Section 3.

OFFSETS refers to the character offsets in the original

source text which contains the string ktbh. The field

TOKENS contains the indices of the tree tokens that arise

from this source token. (Note that the numbering of

source tokens and tree tokens is different. This is source

token #10 in paragraph 22, while it maps to tree tokens

#13 and #14 in paragraph 22.) POS, VOC, and GLOSS

duplicate the information in the tree tokens, simply by

concatenating them together, since for users working with

only the morphological annotation, and not the trees, it is

more convenient to have the information in one place.

To continue this example, the “treebank-level” file, with

the tree tokens, has the corresponding two entries:

 INPUT_STRING: آ��������
 IS_TRANS: ktb

 COMMENT: [Separated]

 INDEX: P22W13

 OFFSETS: 42,45

 UNVOCALIZED: ktb

 VOCALIZED: kutub+i-

 POS: NOUN+CASE_DEF_GEN

 GLOSS: books + [def.gen.]

 INPUT_STRING: 	
 IS_TRANS: h

 COMMENT: []

 INDEX: P22W14

 OFFSETS: 45,46

 UNVOCALIZED: h

 VOCALIZED: -hi

 POS: POSS_PRON_3MS

 GLOSS: its/his

4 In this paper we use the terms INPUT_STRING and

IS_TRANS interchangeably.

4

These are the two tree tokens at indices P22W13 and

P22W14. The concatenation of the POS, VOC, and

GLOSS information in these tokens is the same as the

corresponding fields in the “pos-level” source token info.

The VOCALIZED field is simply the appropriate

segment(s) of the vocalized form provided by SAMA.

Note however that there are two additional forms of the

tree tokens provided in the “treebank-level” file. One is

the IS_TRANS, which is a partition of the IS_TRANS

from the source token, such that the partition seems

appropriate. For example, here the “h” in “ktbh” is clearly

associated with the tree token with the vocalized form

“hi”, while the “ktb” belongs with the first tree token. The

OFFSETS field likewise corresponds to this partition of

the IS_TRANS. There is an additional field provided, the

UNVOCALIZED, which does not have the additional

vocalization information (short vowels “u” and “i” here),

and is in fact identical to the IS_TRANS in this example.

These fields are provided for the purposes of users who

wish to use the tree information but without using the full

morphological analysis as the basis of the tree tokens.

This is because they might wish to use an alternate

pipeline which might, for example, produce only a limited

tokenization and partial morphological analysis, where

the tokenization is sufficient to produce the IS_TRANS

forms of the tree tokens. The tree annotation refers to the

tree tokens, but it is now an easy matter to use any of these

alternate forms of the tree tokens (i.e., IS_TRANS or

UNVOCALIZED instead of VOCALIZED) for users

who wish to work with those forms.

The trees are supplied in three forms:

1) with tree tokens (leaves) arising from the

VOCALIZED field, for which the excerpt here is:

(NP (NOUN+CASE_DEF_GEN kutub+i-)

 (NP (POSS_PRON_3MS -hi)))

2) with tree tokens arising from the UNVOCALIZED

field:

(NP (NOUN+CASE_DEF_GEN ktb)

 (NP (POSS_PRON_3MS h)))

3) and with tree tokens arising from the index value:

(NP W13

 (NP W14))

with the intent that this will make it easier to use any of

the variants of the tree token forms.

Despite the presence of these alternate forms of the tree

tokens in the release, during the annotation process it is

the vocalized tree tokens (i.e., VOCALIZED in the above

“treebank-level” example listings), arising from the

partition of the SAMA analysis, that are the basis of the

tree annotation. The UNVOCALIZED form is a

derivative byproduct of this analysis, produced at the end

of annotation. Likewise, the INPUT_STRING for the tree

token is a derivative byproduct of the full annotation

process (although the INPUT_STRING for the source

token is not, and is the actual beginning of the annotation

process). We discuss in Section 4 the exact procedure

used for generating the UNVOCALIZED and

INPUT_STRING forms of the tree tokens.

The definition of these derivative fields is in fact not a

trivial matter. While the INPUT_STRING for the source

token has a perfectly coherent definition (just the original

whitespace-delimited token in the source text), the

INPUT_STRING for the tree token is not so intuitive,

although in the above it seems obvious. Likewise, the

UNVOCALIZED value has had an inconsistent definition

in the past. We have recently modified the definition and

creation of these forms to provide more consistent and

meaningful data for users wishing to use these forms, as

described in Section 4.

Another issue that arises in the annotation workflow

described so far is that it relies upon a SAMA solution

being available. This is not always the case, and we have

recently modified the annotation pipeline to better handle

this situation. This is described in Section 3. (See also

Maamouri et al. (2010) for some discussion of the wider

context of this annotation pipeline.)

3. Status of Integration with SAMA

As described in Section 1, a significant change in recent

releases of the ATB is that the data includes information

making explicit the relation between each source token

and the morphological analysis (the selected SAMA

solution).

Each source token now includes a line for “STATUS,”

which has one of the values 1-4. We illustrate the

meaning of these values with examples from the corpus

ATB3-v3.25. All of the examples in this section are from

the “pos-level” (“before-treebank”) file listing the tokens

– that is, the source token listing, because these are the

annotation objects that directly relate to SAMA (as

opposed to the tree tokens).

Status #1. INCLUDED IN SAMA: The source token

and associated solution exactly match one of the possible

solutions for this source token in SAMA. That is, the

Part-of-Speech (POS), vocalization, and lemma values for

the source token exactly match one of the solutions in

SAMA for that source token.

For example, this solution:

5 As of this writing, ATB3-v3.2 is scheduled for publication in

April 2010, LDC Catalog Number: LDC2010T08.

5

 INPUT_STRING: �ً���
 IS_TRANS: jndyAF

 INDEX: P1W2

 OFFSETS: 4-11

 TOKENS: P1W2-P1W2

 STATUS: 1

 LEMMA: [junodiy~_1]

 UNSPLITVOC: (junodiy~AF)

 POS: NOUN+CASE_INDEF_ACC

 VOC: junodiy~+AF

 GLOSS: soldier + [acc.indef.]

has status #1, indicating that the given solution

(POS,VOC,GLOSS,LEMMA,UNSPLITVOC) exactly

matches one of the SAMA solutions for the input word

jndyAF.

Status #2. LIMITED SOLUTION: The given solution

is not a possible SAMA solution for the input string, and

so has been entered manually as a separate step in the

annotation pipeline. The entered solution is of a very

limited format, in which there has been no attempt to add

the vocalization information in a typical SAMA solution.

For example, this solution:

 INPUT_STRING: ال�������������
 IS_TRANS: sntrAl

 INDEX: P4W42

 OFFSETS: 229-236

 TOKENS: P4W49-P4W49

 STATUS: 2

 LEMMA: [TBupdate]

 UNSPLITVOC: None

 POS: FOREIGN

 VOC: sntrAl

 GLOSS: nogloss

is a status #2 solution, since the given fields of the

solution are not a SAMA solution – the VOC is the same

as the INPUT_STRING field, with no additional

information entered.

The intent is that status #2 will be reserved for those

words that are Arabic but are not expected to have a

solution in SAMA, such as TYPO, FOREIGN, etc. This

also includes DIALECT words, which are by intent not

included in SAMA, which is focused on Modern Standard

Arabic. Following is one such example:

INPUT_STRING: م��������������
 IS_TRANS: btqwm

 INDEX: P15W7

 OFFSETS: 36-42

 TOKENS: P15W8-P15W8

 STATUS: 2

 LEMMA: None

 UNSPLITVOC: None

 POS: DIALECT

 VOC: btqwm

 GLOSS: nogloss

Status #3. PENDING SAMA SOLUTION: This is

similar to status #2 in that the given solution is not a

SAMA solution for the input string, and so has been

entered in an alternate way. However, in this case the

solution does have vocalization and other characteristics

of a SAMA solution, and so is considered a “pending”

SAMA solution. The intent is that these solutions will be

subject to further review and eventual inclusion in

SAMA.

For example, this solution:

 INPUT_STRING: ���������
 IS_TRANS: bAnh

 INDEX: P6W15

 OFFSETS: 68-73

 TOKENS: P6W18-P6W20

 STATUS: 3

 LEMMA: [bi>an~a_1]

 UNSPLITVOC: (bi>an~ahu)

 POS: PREP+SUB_CONJ+PRON_3MS

 VOC: bi+>an~a+hu

 GLOSS: by/with+that+it/he

has status #3 because the given solution is not actually a

solution included in SAMA 3.1, although it has the

complete form of such a solution. (This particular

instance appears to an example of the well-known

“missing hamza” problem discussed in Buckwalter

(2004).)

Status #4. EXCLUDED FROM CHECK WITH

SAMA: The source token is a case of punctuation or

some other token that by intent is not included in SAMA

and therefore excluded from this analysis.

For example, this solution:

6

 INPUT_STRING: 650

 IS_TRANS: 650

 INDEX: P1W1

 OFFSETS: 0-4

 TOKENS: P1W1-P1W1

 STATUS: 4

 LEMMA: [DEFAULT]

 UNSPLITVOC: (650)

 POS: NOUN_NUM

 VOC: 650

 GLOSS: nogloss

has status #4 because digit numbers are not checked for

inclusion in SAMA.

In the ATB3-v3.2 release there are 339,710 source tokens,

which are categorized with the following statuses:

Status #1 INCLUDED IN SAMA 287,282
Status #2 LIMITED SOLUTION 939
Status #3 PENDING SAMA SOLUTION 4323
Status #4 EXCLUDED FROM CHECK

WITH SAMA
47,156

TOTAL 339,710

Table 1: Categorization of SAMA status

of source tokens in ATB3-v3.2.

4. New Algorithm for Creation of INPUT
STRING and UNVOCALIZED Tokens

We now return to the issue discussed in Section 2,

regarding the creation of the INPUT STRING and

UNVOCALIZED tokens at the end of the annotation

process.

4.1 INPUT STRING

The INPUT_STRING value for the tree token is a

substring of the INPUT_STRING for the source token

such that it corresponds in a mostly natural way to the

VOCALIZED field for that tree token. For example, in

Section 2 the source token with INPUT_STRING “ktbh”

yielded two tree tokens with INPUT_STRING values

“ktb” and “h”, corresponding to the VOCALIZED values

“kutubi” and “hi”.

To take a somewhat less obvious example, the source

token “EmA” can receive the following analysis:

 INPUT_STRING: ���
 IS_TRANS: EmA

 INDEX: P13W13

 OFFSETS: 72-76

 TOKENS: P13W15-P13W16

 STATUS: 1

 LEMMA: [Eam~A_1]

 UNSPLITVOC: (Eam~A)

 POS: PREP+REL_PRON

 VOC: Ean+mA

 GLOSS: from/about/of+what

In this case the vocalized solution is Ean+mA, and based

on the part-of-speech tags results in two tree tokens, for

Ean/PREP and mA/REL_PRON:

 INPUT_STRING: ع
 IS_TRANS: E

 COMMENT: [Separated]

 INDEX: P13W15

 OFFSETS: 72,73

 UNVOCALIZED: En

 VOCALIZED: Ean-

 POS: PREP

 GLOSS: from/about/of

 INPUT_STRING: ��
 IS_TRANS: mA

 COMMENT: []

 INDEX: P13W16

 OFFSETS: 73,76

 UNVOCALIZED: mA

 VOCALIZED: -mA

 POS: REL_PRON

 GLOSS: what

This is an example where the “normalization” introduced

in SAMA inserts the “n” of “Ean” that is dropped when it

appears in the source token text “EmA”. However, the

creation of the INPUT_STRING values for the two tree

tokens is a partition of the source token text, so “EmA”

must be split over the two tree tokens, and here the “mA”

in the source token INPUT_STRING belongs with the

second tree token, and only the “E” remains for the first

tree token.

The algorithm used in earlier data releases to create the

INPUT_STRING tokens for the tree tokens sometimes

created inappropriate INPUT_STRING tokens. For

example, here it would have created the two

INPUT_STRING values “Em” and “A”.

To correct this, we have completely revised the procedure

for creating these INPUT_STRING tree tokens. The new

algorithm can be viewed as a function that takes as input

the source token text and vocalized tree tokens, and

outputs the source token text in the appropriate way. This

requires accounting for the possible types of

normalization that might occur in the vocalized tree

7

tokens as a result of normalization included in SAMA,

such as the “n” insertion in the above example. This is

what we have tried to do, by essentially stepping through

the source token and vocalized tree tokens in parallel, and

deciding on the proper partition points in the source token

text, allowing for discrepancies in characters between the

vocalized tree tokens and the source token text that arise

from the SAMA normalization.

4.2 UNVOCALIZED

The UNVOCALIZED form of the tree token had a sort of

a hybrid definition in earlier releases. For tree tokens that

did not result from split source tokens (i.e., the source

token resulted in only one tree token), the

UNVOCALIZED form was identical to the

INPUT_STRING. For source tokens that were split, each

UNVOCALIZED form of each resulting tree token was

set to be simply the VOCALIZED form with diacritics

removed. This hybrid nature of the UNVOCALIZED

form is discussed further in Maamouri, Kulick & Bies

(2008). The previous UNVOCALIZED form has also

been used for parsing (Bikel, 2004; Kulick et al., 2006).

This hybrid definition of the UNVOCALIZED tokens led

to inconsistencies in the Treebank, such that instances of

tree tokens with the same INPUT_STRING and

VOCALIZATION appeared with different

UNVOCALIZED strings, as discussed in Maamouri,

Kulick & Bies (2008). While the vocalized tree tokens

have a clear definition as part of the annotation process,

and the INPUT STRING tree tokens also have a

reasonably clear meaning (even if nontrivial to obtain),

this was not true of the UNVOCALIZED tokens in earlier

releases.

We have now simplified the definition to make the

UNVOCALIZED tree tokens be the VOCALIZED tree

tokens with diacritics stripped out (i.e., treating all tokens

in the same way as split tokens were treated previously).

We illustrate this change with one example showing the

effect of the recent changes on the UNVOCALIZED

form.

Under the old method for creation of the

UNVOCALIZED form, the source token “Ant$Arh”

 yielded ,(at least under one particular analysis) ا������������ر	

the following two tree tokens:

 VOCALIZED: {inoti$Ar+u-

 IS_TRANS: Ant$Ar

 UNVOCALIZED: {nt$Ar

 VOCALIZED: -hu

 IS_TRANS: h

 UNVOCALIZED: h

with the “h” being a pronominal clitic. The vocalized

solution for the first tree token is “{inoti$Ar+u”. Since

the source token was split, the UNVOCALIZED string

for the first was set to the VOCALIZED token with

diacritics removed, that is just “{nt$Ar”.

 However, the source token “Ant$Ar” ر���������� again ,ا��

under the old method, yielded one tree token:

 VOCALIZED: {inoti$Ar+u

 IS_TRANS: Ant$Ar

 UNVOCALIZED: Ant$Ar

 with the vocalization “{inoti$Ar+u”. Since in this case

the source token was not split, the UNVOCALIZED

token was set simply to the original source text,

“Ant$Ar”.

Therefore, under the old algorithm there were two tree

tokens in these cases, both with the same

INPUT_STRING (Ant$Ar) and the same VOCALIZED

form ({inoti$Ar+u), but different UNVOCALIZED forms

({nt$Ar and Ant$Ar), with the difference occurring only

because in one case the original source token happened to

have a pronominal clitic.

Using the new algorithm, the UNVOCALIZED string for

both is “{nt$Ar”, derived for both instances by removing

the short vowels from the same VOCALIZED form,

“{inoti$Ar+u”. Tokens with the same VOCALIZED

form will have the same UNVOCALIZED form,

regardless of the orthogonal issue of whether the source

token included a clitic or not, because the new algorithm

derives all UNVOCALIZED forms from the

corresponding VOCALIZED forms.

5. Conclusion

The Arabic Treebank closely integrates SAMA into the

annotation workflow, in which the morphological analysis

for a token in the Treebank is selected from among the

SAMA alternative solutions for that token. However, this

integration with SAMA gives rise to various challenges

for the annotation workflow and for maintaining the link

between the Treebank and SAMA.

In this paper we have discussed how we have overcome

these problems with consistent and more precise

categorization of each Treebank token for its relationship

with SAMA. We also discussed how we have improved

the creation of alternative forms of the tokens used in the

treebank structures.

As a result of this work, the Arabic Treebank and SAMA

can now be viewed as a more tightly integrated unit. This

provides valuable data for machine learning experiments

on the problem of relating a source token to the correct

morphological analysis, in this case mediated through the

list of possible SAMA solutions. It also provides a

resource relating the different forms of the same

underlying token with varying degrees of vocalization,

8

both in terms of how they relate to each other and how

they relate to the syntactic structure.

6. Acknowledgements

This work was supported in part by the Defense

Advanced Research Projects Agency, GALE Program

Grant No. HR0011-06-1-0003. The content of this paper

does not necessarily reflect the position or the policy of

the Government, and no official endorsement should be

inferred.

We would also like to thank David Graff and Fatma

Kaddeche for valuable discussions, and the Arabic

Treebank annotators for their many contributions.

7. References

Ann Bies, Mark Ferguson, Karen Katz and Robert
MacIntyre (Eds.). (1995). Bracketing Guidelines for
Treebank II Style. Penn Treebank Project, University of
Pennsylvania, CIS Technical Report MS-CIS-95-06.

Daniel Bikel. (2004). On the Parameter Space of

Lexicalized Statistical Parsing Models. Dissertation,

Department of Computer and Information Sciences,

University of Pennsylvania. 2004.

Tim Buckwalter. (2004). Issues in Arabic orthography

and morphology analysis. In Proceedings of the

Workshop on Computational Approaches to Arabic

Script-based Languages (ACL Semitic Workshop

2004).

Seth Kulick, Ryan Gabbard and Mitchell Marcus. (2006).

Parsing the Arabic Treebank: Analysis and

Improvements. In Proceedings of the 5
th

 International

Conference on Treebanks and Linguistic (TLT 2006).

Mohamed Maamouri, Ann Bies and Seth Kulick. (2009).

Upgrading and enhancing the Penn Arabic Treebank: A

GALE challenge. In Joseph Olive (Ed.), In progress for

publication (book describing work in GALE program).

Mohamed Maamouri, Ann Bies, Seth Kulick, Wajdi

Zaghouani, David Graff and Michael Ciul. (2010).

From Speech to Trees: Applying Treebank Annotation

to Arabic Broadcast News. In Proceedings of the

Seventh International Conference on Language

Resources and Evaluation (LREC 2010).

Mohamed Maamouri, Seth Kulick and Ann Bies. (2008).

Diacritic Annotation in the Arabic Treebank and its

Impact on Parser Evaluation. In Proceedings of the

Sixth International Conference on Language Resources

and Evaluation (LREC 2008).

