
From Legacy Lexicon to Archivable Resource

Mike Maxwell

Linguistic Data Consortium
3600 Market St, Suite 810

Philadelphia, PA 19104 USA
maxwell@ldc.upenn.edu

Abstract
A common format for lexicons produced in field linguistics projects uses a markup code before each field. The end of each field is
implicit, being represented by the markup code for the next field. This markup format, commonly called “Standard Format Code(s)”
(SFM), is used in one of the most common lexicography tools used by field linguists, Shoebox. While this plain text format satisfies
many of the desiderata for archival storage of language materials (as outlined in Bird and Simons 2003), there are usually problems
with such lexicons as they are produced in practice which detract from their value.

In particular, SFM-coded lexicons commonly suffer from inconsistencies in the markup codes, especially in terms of the adherence of
the fields to a hierarchical order (including omission of fields required by the presence of other fields). It is also common for the
contents of certain fields to be limited to a fixed set of items, but for the lexicographer to have been inconsistent in the spelling of
some of those items. Finally, spell checking (and correction) needs to be carried out in various languages, including both the glossing
language(s) and the target language (where possible).

This paper outlines some tools for correcting these problems in SFM-coded lexicons.

Introduction: The Problem
One of the most important results of a typical field
linguistic program is a bilingual dictionary. Most
dictionaries are prepared in electronic format, often in the
flat text format. Other formats can generally be converted
into a plain text format.

At present, the most common flat file format is that
produced by the SIL program Shoebox. This format
utilizes a markup code at the beginning of each field;
often this code begins with a backslash, e.g. “\w ” for a
headword. These tags are therefore known as “backslash
markers”, or more formally as “Standard Format Markers”
(SFMs).

The end of a field is only marked implicitly, by the SFM
of the following field. (Fields may occupy more than one
line; normally, newlines within fields have no meaning.)

The beginning of a record is marked by the presence of a
designated SFM (often either that of the headword field or
an arbitrary record number, so that the designated SFM
performs a dual function as field marker and record
marker). The end of a record is marked by the beginning
of the next record. (Often there is a blank line separating
records, but this is neither sufficient nor necessary.)

While plain text format satisfies many of the desiderata
for archival storage of language materials (as outlined in
Bird and Simons 2003), there are certain typical problems
with such SFM-coded lexicons as they are produced in
practice which detract from their value.

One such problem has to do with the fact that dictionaries
are actually structured objects, with logical constraints on
the structure of fields within a record (lexical entry), the
relationships between lexical entries, and on the contents
of the fields themselves. While the structure can be
represented using appropriate markup, in practice field
linguists’ lexicons violate the constraints, both at the level
of the markup and at the level of the contents of the fields.

LinguaLinks (another SIL program) has a built-in model
of lexical entries which enables it to impose well-
formedness constraints at data entry time. However,
LinguaLinks does not enjoy the large market share among
field linguists that Shoebox does. While it is possible to
impose some constraints on a Shoebox dictionary at data
entry time, it is possible to do more validity checking in
batch mode, provided there is a model of the lexicon.
Such a model implies making explicit the semantics of the
fields, a semantics which is implicit (albeit sometimes
imperfectly so) in the user’s mind when he (or someone
else) designed the database.1

The purpose of this paper is to demonstrate the use of
automatic validity checkers which can be applied off-line
to an SFM-coded lexicon, marking up the database for
errors in batch mode; the errors can then be searched for
and corrected on-line. These checkers (or their
predecessors) have proven useful in practice on a variety
of text-based lexicons. The checks performed include:

• Verifying the markup codes, including their relative
ordering and hierarchy (as specified by a model);

• Listing the parts of speech and other restricted fields,
with occurrence counts (useful for finding erroneous
field content);

• Doing spell for data in languages for which a spell
checker is available, and character n-gram checking
for languages for which no spell checker is available.

1 There are in fact several well thought-out models of lexical
databases which could be applied to the problem. Generally
these models are hierarchical (e.g. senses within lexical entries),
but they usually allow for cross-references as well (e.g.
synonymy relations, major-minor lexical entries). This is well-
suited to an XML structure. Unfortunately, while Shoebox has
an XML export capability, it does not create a DTD or Schema,
and there are some problems with its XML export (see e.g.
http://www-nlp.stanford.edu/kirrkirr/dictionaries/).

In addition, I demonstrate a way to export the lexicon to
Microsoft Word format, automatically marking the fields
for their language so that the multi-lingual spell correction
tools of Word can be applied.

There are other consistency checks which could also be
performed. Shoebox has the built-in capability of
checking that for every cross-reference, the target of that
cross-reference exists. However, Chris Manning (p.c.) has
suggested that one should also check for bidirectional
references (e.g. synonyms), and this checking capability is
not built into Shoebox. This sort of check may be added to
the suite of tools described here in the future. Another
useful check would be that sense numbers begin with 1
and are sequential.

The validity checking tools will be made available at a
public website.

Verifying Markup Codes
Version 5 of Shoebox2 provides a number of checks that
can help ensure consistency. Hence, while it is not
necessary to use Shoebox to maintain an SFM-coded
dictionary (or other database), Shoebox is a useful tool in
the verification process.

Most of the consistency checks in Shoebox are set up
using Shoebox’s “Database Type Properties” dialog box.
For example, Shoebox can be told which fields can be
empty, and it will check for fields which should be filled,
prompting the user to fill in the missing data. However,
while Shoebox can be told which field should follow a
given field, it only uses this information when the user
adds a new field3; it does not check for missing fields
which should follow a given field in existing data.

Hence, the first consistency check described here ensures
that all required fields are present. It would be helpful if
the information concerning the fields could be extracted
from the dictionary’s ‘type’ file.4

2 All remaining references will be to version 5 of Shoebox. More
recently a similar tool called ‘Toolbox’ has been released (see
http://www.sil.org/computing/catalog/show_software.asp?id=79)
I have not tested the techniques in this paper under Toolbox,
however Toolbox claims to be upwards compatible from
Shoebox, so the procedures should work. Toolbox also includes
a verification mode for glossed interlinear text, a feature of
earlier versions of Shoebox which was omitted from version 5.
3 In fact, a required field is only added when one hits the Enter
key after adding the parent field of the required field. For
example, adding an example sentence field will not add a field
for the translation of that example sentence until the user hits the
enter key at the end of the example sentence. Users may not in
fact hit the Enter key when adding fields, so missing fields can
arise even after the hierarchy of fields have been established.
4 The name and location of the type file is given in the Database
Types dialog box (Projects menu), and is created by Shoebox
from the information in the previously referred-to Database Type
Properties dialog box. The latter should therefore be checked for
accuracy. Since Shoebox builds the information in that dialog
from the database itself, it may contain obsolete information
(e.g. SFMs which were used in earlier stages of the work). An
undocumented feature is that only those SFMs which are
actually used in the dictionary appear in bold in the Database

An example of the information in one record of the .typ
file appears here:

\+mkr d
\nam Definition (English)
\lng English
\MustHaveData
\mkrOverThis w
\mkrFollowingThis dfr
\-mkr

The field labeled \mkrOverThis defines the parent SFM of
the given SFM: in this case, a \d field appears under a \w
field. Unfortunately, this is not sufficient to describe the
notion of an obligatory field. That is, the presence of a
given field implies the presence of its hierarchical parent,
and the presence of an immediately following field (if
any). But there is no way to encode the necessity for a
field which must appear, but which may not appear
immediately after a given field. For example, if a record
must have a definition field following a part of speech
field, but a usage comment may optionally intervene,
there is no way to encode this in the .typ file.

Accordingly, the consistency check for required fields
must use its own representation of the dictionary structure.
It therefore employs a standard regular expression
notation to encode both the hierarchy and the
obligatoriness of field structure within records, and the
record structure within a dictionary file.5 The following is
an example expression defining the field structure of a
dictionary file (the full notation is given in the program
documentation):

id
(w
 ((pos defn (ex exEn exFr)* (syn)?)
 | (num pos defn (ex exEn exFr)* (syn)?)+
)
)+

This is interpreted as follows. A dictionary file begins
with a single \id record. Each following record is marked
by a \w field, and may contain either of two alternatives:
One alternative contains a part of speech (\pos), definition
(\def), zero or more example sentences (\ex), each of
which must have both an English (\exEn) and a French
(\exFr) translation), and an optional cross-reference to a
synonym (\syn; the optionality is indicated by the question
mark). The other alternative consists of a one or more
senses (represented implicitly), each of which contains a
sense number (\num), followed by the same contents as
the first alternative.6

Notice that the topmost structure is defined at the level of
a dictionary file, not the entire dictionary. For many
dictionaries, no such distinction is relevant: the entire
dictionary is contained within a single file. It is not

Type Properties dialog. In most cases, any non-bold markers
should therefore be removed.
5 Allowing alternative record structures within the lexicon allows
for different kinds of entries, such as minor entries. It also allows
for various bookkeeping records that Shoebox includes,
primarily at the top of the file.
6 There is obvious redundancy in this description, which could
be eliminated by use of something like the Backus Naur Form.
For the sake of readability, I have not employed such a notation.

uncommon, however, for larger dictionaries to be
maintained in separate files. For purposes of field
checking, however, it should be sufficient to process each
such file separately, since records should not cross file
boundaries.

The operation of the field checker is as follows: it first
reads in the regular expression defining the lexicon
structure. It then reads a lexicon file in. Following the
SFM notation, records are assumed to be everything from
the record-marking SFM in one record to the next record-
marking SFM, or to the end of the file (where a record-
marking SFM is any top-level SFM in the regular
expression). Ambiguity is unlikely here, but the parser
uses an anti-greedy algorithm: the first SFM which could
begin a new record is assumed to do so. All fields
encountered before the next record-marking SFM are
assigned to the current record.

Within a single record, the checker then attempts to assign
the field markers actually found to the expected field
structure. In case of error, a fall-back algorithm is used
which allows for the possibility of an inappropriately
missing field. For instance, suppose the parser encounters
the following structure:

\ex Yax bo’on ta sna Antonio.
\exEn I’m going to Antonio’s house.
\ex Ban yax ba’at?
\exEn Where are you going?
\exFr Ou allez-vous?

Given the field definition above, there is a missing \exFr
field after the first \exEn field. The parser encounters the
second \ex field when it is expecting to find a \exFr field.
It assigns the existing \enEn field under the current \ex
field, hypothesizes a missing \exFr sub-field, and then
begins with the second found \ex field. By way of an error
message, it prints out an error message in the
hypothesized \exFr field:

\ex Yax bo’on ta sna Antonio.
\exEn I’m going to Antonio’s house.|
\exFr ***Missing field inserted***
\ex Ban yax ba’at?
\exEn Where are you going?
\exFr Ou allez-vous?

Later, the user can search for the error strings (by default
these are flanked by ‘***’) and make the appropriate
repairs.

In general, when the parser encounters an unexpected
field, it assumes that a single field is missing, and attempts
to repair the error by inserting the expected field, then
resuming the parse with the next actual field. The
reasoning here is that fields are more often missing than
inserted or put in the wrong order.

However, not all parsing errors can be repaired in this
way. If an unexpected field is encountered which cannot
be repaired by inserting a single missing field before it,
then the unexpected field is labeled with an error message,
and the parser attempts to resume with the next field
marker, ignoring the presumably erroneous one. Consider
the following record, which is ill-formed in the light of the
earlier definition:

\w yax
\pos AUX-V
\pos Adj
\defn green

Since within a record only one \pos field is expected (in
the absence of a \num field indicating multiple senses), the
parser labels the second \pos field as erroneous, and
attempts to resume parsing with the \defn field:

\w yax
\pos AUX-V
\pos Adj ***Erroneous field***
\defn green

If neither repair—insertion of a single field, or over-
looking a single field—succeeds, then the parser issues a
general error message “***Unable to parse record
structure***”, and resumes parsing with the next record.

Obviously this simple-minded error correction algorithm
can go astray, but it flags many errors correctly, and when
it cannot determine the cause of an error, it will at least
tell the user that there is a problem in the record structure.

An alternative to using a special purpose parsing
algorithm would be to export the dictionary as an XML
file from Shoebox, and to use existing XML parsing tools.
However, while Shoebox can export an XML file, it
cannot import one. This approach would therefore require
a separate XML lexicon viewer, with many of the
capabilities of Shoebox built in; the user would have to
locate an error in the XML viewer, then search in Shoebox
for the same record in order to repair the error. By instead
parsing the SMF-coded file directly and writing the error
messages into the SFM file, the errors can be displayed
directly in Shoebox.

Occurrence Counts
Shoebox can restrict the contents of designated fields to a
certain set of elements, termed a “Range Set.” This is
useful for closed class items, such as parts of speech. The
list of allowable elements can either be built by hand, or
Shoebox will build it automatically from the actual
elements found in the data. In my experience, if field
linguists employ range sets at all, the latter is the way the
sets are built—which means that any erroneous items in
the data are automatically added to the range set.

A savvy user can examine the range set and remove any
spurious items, then run a consistency check to repair any
fields which violate the edited range set. But in fact, it
often devolves upon a consultant to perform this check (if
not to perform the repairs). While obvious errors are easy
to spot (the use of both “Noun” and “noun”, say), the
consultant may not be familiar enough with the grammar
of the language to notice other erroneous items in the
range set. For this reason, it is useful to count the number
of times particular elements in a given field appear, on the
principle that what is rare is often an error.

There are many ways this can be done; I use a simple
program (coded in Python) which counts all the strings
appearing between a particular pair of regular expressions.
For counting parts of speech, for example, the search
expression has “^\\pos “ (a “\pos” at the beginning of line)

to the left, and “$” (end of line) to the right. The resulting
list can be perused for low-frequency items.

Spell Correction
Spell checking can easily be done for most major
languages by extracting the text from fields which are in
the desired language, and running the extracted text
through an off-line spell checker (such as aspell or
ispell7).

One problem with this approach is that SFM-coded fields
may not be contained on a single line. This is particularly
true of example sentences (or their translations into the
glossing language(s)). It is therefore not sufficient to grep
out the lines containing the desired SFM codes, without
first normalizing the file(s) so that each field occupies a
single line. Again, this can be done in a variety of ways; I
use a simple Python program to combine all the fields of a
given record onto a single line, then break the record up
into fields again at SFMs. (I also tokenize the result into
words, and sort them uniquely so that each word need
only be checked once; abbreviations and the SFMs
themselves can also be filtered out at this stage.)

Another detail that could cause problems is the encoding
issue. Spell checkers assume a particular encoding, and if
the Shoebox dictionary uses a different encoding, it would
be necessary to run the text through an encoding converter
(such as iconv8) prior to spell checking.

However, the biggest issue for spell checking of a
multilingual dictionary is that it is cumbersome to do spell
correction. That is, while aspell supports spelling
correction of a monolingual file, it is not easy to merge the
corrected result back into the SFM-encoded dictionary,
even if one does not tokenize the extracted fields. Nor
would it be straightforward to run aspell directly on the
SFM-encoded files, precisely because they are
multilingual, and there is no way to tell aspell what
language a given field is in.

If there are only a small number of spelling errors, this is
perhaps not an issue. One can extract the fields, run them
through a spell checker to produce a list of misspelled
words, then use Shoebox to search for each of the
misspellings in situ.

But a dictionary I was recently working with prompted me
to find another solution: the glosses were in both English
and French, and the French glosses had been entered
without accents or cedillas. Spell correction was therefore
a massive exercise, involving not only correction of typos,
but entering numerous accented characters.

The better solution involved exporting the SFM dictionary
to Microsoft Word, running a program in Word to define
the language for each field, and using Word’s built-in
French and English spell correctors on their respective
fields. The French spell corrector made it trivial to add the

7Both aspell and the similar ispell program are freely available,
and run under Linux or the CygWin environment under
Windows, as well as coming in native Windows versions. There
are dozens of language-particular dictionaries for aspell and
ispell, see http://aspell.net/ and http://fmg-
www.cs.ucla.edu/geoff/ispell-dictionaries.html.
8 Again, iconv is freely available.

accented characters. (Of course Word could not
automatically correct words where two forms existed
which differed only by the presence of accents: a ‘has’
and à ‘to’, for instance.) The file was then exported back
into Shoebox.

Note that this process uses Word only as a temporary way
of modifying the dictionary. It is not intended that any sort
of editing, apart from spell correction, be performed in
Word, thus avoiding the problems inherent in doing
lexicography in a word processor (Bird and Simons 2003).

In more detail, the SFM language marking program is
written in Word’s Visual Basic programming language,
and functions in effect as a Word macro. The user imports
an SFM-coded file into Word, then launches the program
from within Word.

The SFM language marking program parses the
information on fields and the language that they are
encoded in from the Dictionary Type file (see footnote 4),
making certain assumptions. For example, Word has
separate spelling dictionaries for several dialects of
French; if the user specifies “French” in the type file, the
import program assumes this means what Word calls
“French (France)”.9 The SFM language marking program
then automatically assigns the contents of each field in the
SFM-coded file to the appropriate language. If a field uses
the “Default” language, the program marks the field as not
to be spell-checked. (The SFMs themselves are also
marked not to be spell-checked.)

Once the program has assigned the field contents to the
appropriate languages, the user can use Word’s spell
checking/ correction features to correct the spelling. When
finished, the user saves the file as text, allowing it to be
imported back into Shoebox.

Finally, not all languages of interest have spell checkers or
correctors. In particular, it is unlikely that the target
language of a minority language dictionary will have any
spell checking facilities (and building an aspell dictionary
from the contents of a bilingual dictionary is obviously not
an option, since it is the bilingual dictionary itself that is
to be checked!). However, what can be done is to extract
the relevant fields (as described above for aspell), and
feed them into a character n-gram program to produce lists
of n-grams of various lengths. Token counts on the
various n-grams can then be used to find rare n-grams,
which may be errors. Another approach would be to parse
the input into syllables, although I have not tried this as
yet.

Reciprocal Cross-references
Shoebox has the built-in capability of checking that for
every cross-reference, the target of that cross-reference
exists. However, Chris Manning (p.c.) has suggested that
one should also check for bidirectional references (e.g.
synonyms), and this checking capability is not built into
Shoebox. This sort of check is easily done by the
following method.

9 A list of installed languages is available from Word’s
Language dialog box.

Create a projection of the lexicon containing the cross-
reference field and the field it cross-references. For
example, if the cross-reference field is \syn, and this is
intended to point to the \w (headword) field, the projection
would consist of records containing the \w and \syn fields
of all records containing a \syn field. The records of the
projection are then formatted in a file so that the fields are
on the same line (for convenience, a tab character can be
used to separate the fields). A copy of this file is then
made, with the fields in the opposite order. Both files are
sorted, and then diff’d. Any lines appearing in one file but
not the other represent one-direction cross references.

References
Bird, Steven; and Gary Simons. 2003. “Seven dimensions

of portability for language documentation and
description”. Language 79:557-582.

