
A Morphological Glossing Assistant

Mike Maxwell

Linguistic Data Consortium
3615 Market Street, Suite 200

Philadelphia, PA, 19104-2608, USA
maxwell@ldc.upenn.edu

Gary Simons

SIL International
7500 W Camp Wisdom Road

Dallas, TX 75236
gary_simons@sil.org

Larry Hayashi

Canada Institute of Linguistics/SIL International
7600 Glover Road,

Langley, BC V2Y 1Y1
larry_hayashi@sil.org

Abstract
One of the tasks language documenters face is that of
assigning glosses to function morphemes, including affixes.
These glosses are typically used in marking up interlinear text
at a morpheme level. But without a morphological parser,
marking up interlinear text is tedious and error-prone. Ideally,
a parser will be guided not only by the form and syntagmatic
properties of morphemes, but also by their morphosyntactic
properties (features).
We describe a system which simultaneously helps the linguist
use standard glosses for function morphemes, and assigns
corresponding morphosyntactic features to those morphemes.
These features can be used by a morphological (or syntactic)
parser. Our system defines a mapping between glosses and
features, as well as a way of extending the gloss/ feature
system with properties which may have been overlooked. We
illustrate the operation of the syst em from both the user’s
point of view and from an internal perspective.

1. Introduction
One of the tasks field linguists and other language

documenters face is that of assigning glosses to function
morphemes, including affixes. Among other
applications, these glosses are typically used in marking
up interlinear text at a morpheme level, as in the
following example (taken from Morse and Maxwell
1999, page 44-5):

Waro-bo-RE 'bãr?
plant.sp-CLS:round-OBJ also

wo-Ij-Ab? xoe-we
seek-STV-H/H.3M.Sg toucan-CLS:flat
‘The toucan also looks for a certain (species of)

plant.’

Marking up interlinear text by hand is tedious and prone
to errors and inconsistencies. For that reason, interlinear
text tools normally provide a morphological parser. But
if this parser is guided only by the form and
syntagmatic properties of morphemes, it may produce

spurious parses. In English, for example, there are
plausibly three affixes (or clitics) having the form –s,
two having the form –er, etc.; usually only one of these
can plausibly be said to occur in a single word, but
determining which one is correct can require
morphosyntactic constraints.

Languages making more use of morphology than
English tend to have even more ambiguity in parsing. If
morphosyntactic constraints are ignored, spurious
parses proliferate to the point where a parser becomes
more cumbersome than helpful. It is therefore desirable
to constrain the parser by the use of morphosyntactic
properties (features).

However, language documenters (whether field
linguists or native speakers) are often unfamiliar with
linguistically motivated morphosyntactic feature
systems. The result is a conflict: on the one hand, the
parser needs a feature system; on the other, many
documenters (particularly in the early stages of their
work) do not want to have to build a possibly complex
feature system, but would rather work with glosses.

In addition, language documenters would benefit
from access to standards for encoding the meaning of
functional morphemes, i.e. standard glosses. (Lexical
morphemes—stems and roots—are glossed with
general terms, for which it would not be feasible to
provide standards.)

Theoretical linguists have developed linguistically
based ontologies for such properties as case marking,
gender systems, tense and aspect, etc. (Corbett 1991,
Corbett 2000, Binnick 1991, Blake 2001, and many
others). These ontologies can satisfy the need for
standards for formal glossing. 1 We propose an
additional role for ontologies, namely as the starting
point for building a morphosyntactic feature system,
thereby satisfying the need for a feature system to be
used by the morphological parser (and in the future, by
a syntactic parser). This dual use is made possible by
the fact that there is—we claim—a fairly direct
mapping between the ontology of morphosyntactic
properties and a morphosyntactic feature system, and an
even more direct mapping between morphosyntactic
features and glosses.

Much of the work of specifying a universal
terminology for morphosyntactic properties has been
done, or is in progress in various projects, such as the
E-MELD project (Lewis, Farrar and Langendoen 2001),
and we intend to build on that foundation.

A mapping between a standard ontology and the
features (or their corresponding glosses) will also
facilitate comparison where glosses have divergent
meanings in different traditions of linguistic
description. For example, the term ‘absolutive’ has one
meaning for linguists working on Nahuatl, and a
different meaning for linguists describing ergative
languages. Glosses can thus be defined by their
mapping to a standard ontology of morphosyntactic
properties.

We describe a system which assists the user in
glossing function morphemes, using a standardized

1 By ‘formal’ glosses, we mean glosses such as ‘HAB’ (for
‘habitual’) and ‘DEF’ (for definite), as opposed to such
informal glosses as ‘always’ and ‘the’. Cf. Simons and
Versaw 1992 section 2.4.4.5 for this distinction

ontology of concepts. The system simultaneously
provides a well-motivated but modifiable
morphosyntactic feature system, usable by a
sophisticated morphological (or syntactic) parser. Our
system defines the mapping between glosses and
features, and a mapping from these back to the ontology
of morphosyntactic properties. The system also
provides a way of extending the gloss/ feature system
with properties not contained in the original ontology.

While the system does not directly modify the original
ontology on the basis of modifications to the gloss/
feature system, we do envision a human-mediated
feedback system for possible extensions or
modifications. (This feedback system is not, however,
discussed in this paper.)

In addition to describing this mapping, we describe
the user interface for glossing in section 3.

Our system is designed to be a component of a
general knowledge base for describing languages called
‘FieldWorks’ (Hayashi and Hatton 2001) This
knowledge base is based on many of the same
underlying concepts as CELLAR (the Computing
Environment for Linguistics, Literacy and
Anthropological Research); see Simons (1998).

2. Overview of solution
A diagram giving an overview of our solution is

shown in Figure 1. At the heart of the approach is an
interactive tool called the Morphosyntactic Gloss
Assistant. It takes two inputs: a general ontology of
morphosyntactic concepts (which it displays in a
‘Universal Gloss List Viewer’), and a language -specific
feature system (which it displays in a ‘Language
Specific Gloss List Viewer’). Section 3 illustrates these
two viewers and describes how the Morphosyntactic
Gloss Assistant works. Section 4 goes behind the
viewers to describe the conceptual model of the general
ontology and the specific feature system.

When the user selects a particular gloss string from
the language-specific gloss list, the system adds the
corresponding feature to a feature structure. The full set
of features for a particular morphosyntactic form
constitute a complete feature structure. The mapping
back from this feature structure to a gloss (which may
consist of several individual gloss strings) for the
morpheme is described in section 5.

Ontology
of

Concepts

Language-specific

Feature System

Feature Structure
Gloss String

Universal

Gloss List

Viewer

Morphosyntactic
Gloss Assistant

Language

Specific

Gloss List

Viewer

System data

Represented in
user interface as:

� User selects glosses to
add to language
specific gloss list.

� The system adds to
the language-specific
feature system.

� User selects glosses to
add to language
specific gloss list.

� The system adds to
the language-specific
feature system.

�

� User selects gloss
items to use in
constructed gloss.

� The system creates
an equivalent
Feature Structure

Represented in
user interface as:

Represented in
user interface as: �

� System builds
constructed gloss
from Feature
Structure

Figure 1. Overview of Morphological Glossing Assistant

Figure 2: Morphosyntactic Gloss Assistant Interface

3. The user interface
Figure 2 presents the user interface of the

Morphosyntactic Gloss Assistant. Features are noted via
the numbered balloons and are explained below.

1. Clicking on the ‘Master Gloss List’ tab reveals a

master ontology. Note that the most common
values are displayed at the highest level. The
user can find more less common values in the
“Other <feature name>” folders.

2. The Master Gloss List includes documentation
for each item in the list.

3. Once the user has selected items from the Master
Gloss List, these items appear in the ‘Project
Gloss List’ tab. The user selects items from here
to build glosses for particular morphemes.

4. Glosses selected by the user are displayed below
the Project Gloss List. When the user selects a
gloss item, the system builds a corresponding
feature structure (hidden here).

5. The system creates a gloss based on the feature
structure it has built.

6. The user can define what the glosses and gloss
separators are for individual features and their
values.

The nature of the data models and the system

operations that take place as the user carries out
interface actions is described in sections 4 through 6.

4. Models of ontology, feature system and
feature structures

Relating feature structures to gloss construction
requires a data model that defines the following three
inter-related subsystems:

1. The feature structures carried by the morphemes

of the language;
2. The feature system of the language; and
3. An ontology of morphosyntactic concepts.

The user selects from the ontology, and the system

creates the appropriate corresponding feature system
objects. The user can customize these objects to reflect
language-specific properties. Once feature structure
types, features and their values have been added to the
system, the user can then select from these to create the
feature structures unique to each functor morpheme.
The user can also add additional “gloss-specific”
information to the feature system objects, and the
system can then generate a of the feature structure as a
gloss.

In this section we look at each of these data models
in detail.

4.1. The model of feature structures
There are three types of morphemes that we want to

help the user to gloss:

1. Inflected variants of stems (e.g. English men =

'man.PL');
2. Inflectional morphemes – particularly affixes

and clitics (e.g. English –s = 'PL'); and

3. Derivational morphemes (e.g. English –ion =
'NMLZR' as an abbreviation for nominalizer).

The features and their specific values carried by

each of these morpheme types are defined in a ‘feature
structure’. In the case of derivational morphemes, two
feature structures are defined representing the before
and after states of the derivation. For the purposes of
this paper we will discuss glossing one the first two
types of morphemes.

 Figure 3 is a UML (Unified Modeling Language)2
representation of the feature structure model. The
classes, attributes and relationships are described below.

Figure 3. Data model for Feature Structures

FeatureStructure class

A FeatureStructure is a general purpose data
structure which identifies and groups together the
individual features of a given word or morpheme.
FeatureStructures may be typed based on the kinds
features the particular structure may take. The feature
specifications of the FeatureStructure are specified by
one or more FeatureSpecifications (see below).

FeatureSpecification abstract class

A FeatureSpecification associates a feature name
with one or more values. Each FeatureSpecification can
be one of two kinds, described below: a ComplexValue
or a ClosedValue. Both kinds indicate the feature for
which they specify a value.

ComplexValue subclass

A ComplexValue is a FeatureSpecification used for
FeatureStructures that have nesting. It contains another
FeatureStructure which is its value.

ClosedValue subclass

A ClosedValue is an instantiation of one of the
FeatureValues (captured as the value association) for a
particular ClosedFeature (captured as the feature
association).

2 Refer to http://www.holub.com/class/oo_design/uml.pdf for
a summary of UML notations. In UML, object classes are
represented as rectangles. Basic class attributes are displayed
inside the rectangle. When a class is composed of other
classes, the relationship is indicated by a line with a diamond
on the composed class end. When one class refers to another
class, the relationship is indicated with a simple line. A line
with an arrow represents a subclass to superclass relationship.
Abstract classes have their class name in italics.

By way of illustration, consider with the feature
structure in Figure 4, which might be associated with a
verbal suffix:

past:TENSE

plural:NUMBER

first:PERSON
OBJECT

singular:NUMBER

third:PERSON
SUBJECT

Figure 4: Standard feature structure notation for third
person singular subject agreement and first person

plural object agreement and past tense

We can represent this using a FeatureStructure,
represented concretely by the XML fragment below3.

<FeatureStructure type="TransitiveVerb">
 <featureSpecs>
 <ComplexValue feature="SUBJECT AGREEMENT">
 <value>
 <FeatureStructure type="Agreement">
 <featureSpecs>
 <ClosedFeature featureName="PERSON"

 value="third"/>
 <ClosedFeature featureName="NUMBER"

 value="singular"/>
 </featureSpecs>
 </FeatureStructure>
 </value>
 </ComplexValue>
 <ComplexValue feature="OBJECT AGREEMENT">
 <value>
 <FeatureStructure type="Agreement">
 <featureSpecs>
 <ClosedFeature featureName="PERSON"

 value="first"/>
 <ClosedFeature featureName="NUMBER"

 value="plural"/>
 </featureSpecs>
 </FeatureStructure>
 </value>
 </ComplexValue>
 <ClosedFeature featureName="TENSE"
 value="past">
 </ClosedFeature>
 </featureSpecs>
</FeatureStructure>

Figure 5. XML instantiation of feature structure

3 In this XML fragment, class names begin with capital letters.
Basic attributes are show as attributes of the XML element,
and relationships are shown as lower case XML elements.

Figure 6: Feature System model

4.2. The model of feature system
The model thus far presented allows the linguist to

create FeatureStructures without constraint: he can declare
types, features and values as needed. Ideally, however, the
building of FeatureStructures should be constrained by
the grammar of the language. That is, there exists for each
language a feature system that defines what types of
feature structures are possible, what features those types
capture, and what the possible values of those features are.

Figure 6 is a UML representation of our model for
feature systems. The boxes in gray represent the
FeatureStructure classes that we just described. Note,
however, that what were simple string attributes in Figure
3 are now references to feature system objects in Figure 6:
the FeatureSystem is thus used to constrain the
FeatureStructures. The classes of the FeatureSystem are as
follows:

FeatureSystem class

The FeatureSystem declares what
FeatureStructureTypes exist in the language. For the
purposes of morphosyntactic glossing (and parsing), we
assume that only one FeatureSystem exists per language
data project.

FeatureStructureType class

A FeatureStructureType is defined for each distinct
type of FeatureStructure that exists in the data.
FeatureStructureTypes are given a name, description and
an optional abbreviation. In our glossing and parsing
system, FeatureStructures specify the morphosyntactic
features and values carried by function morphemes. Thus
a FeatureStructureType declares what the possible
features (FeatureDefn) are for FeatureStructures of that
type.

FeatureDefn (abstract superclass)

Each feature of a FeatureStructureType can be one of
several possible kinds. All FeatureDefns specify the a
name (e.g. PERSON), a description, and an abbreviation

(e.g. PERS). Below, we discuss the differences between
the two most important subclasses.

ClosedFeature subclass

A ClosedFeature has a finite set of possible values. For
example, in a particular language, the feature PERSON
might specify the possible values of first, second and
third.

ComplexFeature subclass

A ComplexFeature allows for nested feature
structures. Languages often specify the same feature more
than once on a single morpheme. For example, in Nahuatl,
the verb indicates person and number agreement with both
the subject and object (much like the FeatureStructure of
Figure 4).

FeatureValue

FeatureValues are values of a particular
ClosedFeature. They have a name, description, and
abbreviation. For example, a language might specify
singular, dual, trial and plural as possible FeatureValues
for the NUMBER feature. For binary features, two
FeatureValues are usually defined: a plus value and a
negative value.

4.3. The model of ontology
The underlying model for the ontology is simple. It is

essentially an outline of concepts, in which the embedding
of one concept under another represents the “a kind of”
relationship. Figure 7 shows a fragment of the ontology.
For instance, working back from “close future”, the
ontology says that, “Close future is a kind of future, which
is a kind of absolute tense, which is a kind of tense, which
is a kind of verb-related property, which is a kind of
morphosyntactic property.”

As an object in the database, each concept has a
number of attributes. An abbreviation proposes a standard
abbreviation for use in glossing. A definition is available
for display in the user interface. This supports the
requirement that the glossing system help the user learn
standard linguistic terminology. In addition, a unique

concept id is given which is copied when creating the
feature system. This allows for future cross-linguistic
comparisons of feature systems against these ontological
concepts, even if the language-specific feature system
changes the name of the item.

morphosyntactic property
 noun-related property
 case
 definiteness
 noun class
 number
 person
 semantic role
 verb-related property
 aspect
 mood and modality
 polarity
 switch reference
 tense
 absolute tense
 future
 close future
 hodiernal future
 remote future
 past
 present
 absolute-relative tense
 relative tense

Figure 7. Ontology as outline.

5. From Ontology to Feature System

There is one more attribute on an ontological concept

which is the key to automatically generating a feature
system from an ontology. This is a type attribute; it
specifies what the concept would correspond to in a
feature system. The possible values for type are listed in
Table 1.

In the Morphosyntactic Gloss Assistant, the ontology
of concepts is displayed to the user in the Master Gloss
List viewer (see section 3). When the user selects an item
from the ontology to use as part of the current gloss, the
type attribute instructs the MGA as to what it should do.
For instance, referring back to the ontology fragment in
Figure 7, “absolute tense” is on type vGroup and selecting
it should do nothing. On the other hand, “future” and the
three more specific kinds of future below it are of type
value; selecting one of these should add the selection as a
possible feature value to the language-specific feature
system. The MGA climbs up the ontology to find the
concept of type feature that dominates the new value, in
this case “tense”, and adds it as a possible value of that
feature. When a feature (rather than a value is selected)
the resulting feature structure uses the built-in value any.
Table 2 summarizes the way in which the eight concept
types map onto the classes of the feature system.

Value Meaning
fsType The item corresponds to a feature

structure type.
fGroup The item is strictly for the purpose of

grouping related features to ease
navigation.

feature The item corresponds to a feature.
complexN The item corresponds to a complex

feature that takes a feature structure of
type “nominal”.

complexV The item corresponds to a complex
feature that takes a feature structure of
type “verbal”.

vGroup The item is strictly for the purpose of
grouping related feature values to ease
navigation.

value The item corresponds to a feature value.
see The item is not a possible gloss, but is a

cross-reference to the gloss that should
be used instead.

Table 1. Type attribute possibilities

Concept type Can it be select -
ed as a gloss?

Object class to generate
in feature system

fsType No FeatureStructureType
fGroup,
vGroup, see No None
feature Yes ClosedFeature
value Yes FeatureValue

coimplexN Yes
ComplexFeature that
takes a feature structure
of type “nominal”.

complexV Yes
ComplexFeature that
takes a feature structure
of type “verbal”.

Table 2. Mapping from types to feature system elements

The ontology is actually stored in an XML file. This
makes it possible for the user to load in either a predefined
global master list or a localized list that is more
appropriate to the language family being studied.

6. From Feature Structure to Gloss
In order to represent a FeatureStructure as a gloss, we

need to add a number of properties to the model. These
additions are circled in Figure 8 and described below.

6.1. Additions to the FeatureStructure model
FeatureStructureType addition

Because we want gloss strings of a given morpheme to
appear in a certain order (e.g. for a transitive verb, the
gloss for subject agreement should precede the gloss for
object agreement, and the gloss for person before that for
number), the features that belong to a
FeatureStructureType are ordered. Operations on the
FeatureSpecifications within a FeatureStructure do not
require any knowledge of order; thus this addition is
purely for the sake of glossing.

Figure 8. Additions to FeatureSystem model for glossing

FeatureDefn additions

For most cases, a gloss string will correspond to a
feature value. But in some cases, it will be desirable for
the gloss string to indicate the feature as well. In
Tucanoan languages of Colombia, for example, most
concrete nouns bear a shape classifier, of which there may
be well over a hundred (Morse and Maxwell 1999). Many
classifiers have the basic meaning of a lexical item, and it
may not obvious whether the gloss of such a morpheme
represents a lexeme or a classifier suffix. A solution is to
use both the feature and its value as gloss: papera-joka
‘paper-CLS:leaf’, rather than ‘paper-leaf’. For these
situations, a glossAbbreviation associated with a
FeatureDefn may be defined.

When a feature glossAbbreviation does appear it can
be optionally separated from its value with a
featureSeparator (e.g. the colon in SUBJ:3S). The
attribute rightOfValue allows the glossAbbreviation to
occur to the right of the value, rather than to the left (e.g.
3S:SUBJ, +PLURAL).

The rightValueSeparator defines what occurs to the
right of the gloss for a feature value if it is followed by
another feature value. For example, the features of tense,
aspect and modality are often found clustered in
languages. One might want to separate each of these
values with a separator (e.g. past tense, progressive aspect
and irrealis modality represented as PAST.PROG.IRR).
The rightValueSeparator on ComplexFeatures separates
the entire “complex” from the next feature (e.g. the
periods in SUBJ:3S.OBJ:1P.PAST).

FeatureValue addition

The FeatureValue itself also has a glossAbbreviation.
The user can choose to not display certain features by
leaving the attribute empty (e.g. a user might want to do
this for default feature values such as present tense).

A situation where the use of an empty
glossAbbreviation for a FeatureValue, and a non-empty
glossAbbreviation for a FeatureDefn, occurs when it is
desirable to indicate the general type of information some
morpheme encodes, but not the details.4 For example, in
Spanish the full gloss of the verbal suffix –o might be
‘1Sg.PRES.IND’ (for ‘1st Singular Present. Indicative’),
but for some purposes the gloss ‘Finite’ may be adequate.

4 Simons and Versaw 1992 (section 2.4.6.2) refer to such glosses
as ‘categories’.

We could specify all the above behaviors on the

objects of the FeatureStructure itself – that is for each
morpheme that carries a feature structure, we would
specify the abbreviations, separators, etc. for that specific
gloss. However, one of the goals of our gloss assistant is
to help the user be systematic in glossing. Thus, we
specify the above behaviors on objects of the
FeatureSystem rather than on the FeatureStructures.

6.2. Examples: model settings and resulting
gloss views

Figure 9 demonstrates how the feature structure model
is populated with data for the feature structure found in
Figure 4. Note that the feature structure objects (in gray)
contain no data but refer to feature system objects
(indicated by the dotted lines5). The ComplexFeatures,
ClosedFeatures and ClosedValues specify how the gloss is
to be constructed, as described above. A period is used
here to delimit the different gloss items except for the
ClosedFeature of person (in accordance with the LSA
stylesheet 6).

6.3. Adding glosses absent from the ontology
While we expect to provide a wide range of glosses

and corresponding morphosyntactic features, linguistics is
not advanced enough to allow us to provide every feature
necessary for all languages.

Shape classifiers (mentioned above) are a case in
point: there are numerous languages with shape
classifiers, and classifier systems are in principle open-
ended. Thus, Cubeo (a language of Colombia) has
separate classifiers for thread-like, rope-like, and vine-like
objects; while Bora (a language of Peru) has classifiers for
objects typically held with the teeth, and for things
produced by cutting tools (Thiesen and Weber, in press).

Thus, we need to allow users to add glosses, along
with the corresponding features. Our intention is for users
to enter their glosses at a particular point in the hierarchy
of glosses, to use the gloss as the feature value, and to use
the super-node of that point in the hierarchy as the name
of the feature.

5 Note that this is not a standard UML diagramming convention.
6 http://www.lsadc.org/language/langstyl.html

This shape
encloses glossing
additions.

Figure 2 illustrates the interface for this: the user clicks
on the Add Value button and fills in the gloss information.
For example, suppose the user decides to add a new tense
gloss. In the figure, the user has already specified one or
more tense glosses; thus the feature for tense is already
present in his language-specific list. After selecting this
feature from the list, he can insert a new value with its
gloss.

In the same way, the user can also add features to a
feature type and specify both the gloss information for the
feature itself and its values. For instance, suppose a

hypothetical language inflects concrete nouns for the color
of the object to which they refer. Since to our knowledge
no language has been described with this sort of marking,
we will not have included glosses for color marking. The
user would need to create a node in the gloss hierarchy for
‘color inflection’; this would become the name of the new
feature. From there, the process proceeds as we have
sketched above for the case where the feature-level node
was already present in the hierarchy.

name = TransitiveVerb

 : FeatureStructureType

name = Subj Agr
glossAbbrev = SUBJ
featureSeparator = colon
rightOfValue = F
rightValueSepartor = period

 : ComplexFeature

name = Obj Agr
glossAbbrev = OBJ
featureSeparator = colon
rightOfValue = F
rightValueSepartor = period

 : ComplexFeature

name = Agreement

 : FeatureStructureType

name = Person
glossAbbrev = none
featureSeparator = none
rightOfValue = 0
rightValueSepartor = none

 : ClosedFeature

name = Number
glossAbbrev = none
featureSeparator = none
rightOfValue = F
rightValueSepartor = period

 : ClosedFeature

name = first
glossAbbrev = 1

 : FeatureValue

name = second
glossAbbrev = 2

 : FeatureValue

name = third
glossAbbrev = 3

 : FeatureValue

name = singular
glossAbbrev = S

 : FeatureValue

name = plural
glossAbbrev = P

 : FeatureValue

name = Tense
glossAbbrev = none
featureSeparator = none
rightOfValue = F
rightValueSepartor = period

 : ClosedFeature

 : FeatureSpecification

 : ComplexValue

 : ComplexValue

 : FeatureSpecification

 : FeatureSpecification

 : ClosedValue

 : ClosedValue

 : ClosedValue

 : ClosedValue

 : ClosedValue

name = Past
glossAbbrev = PAST

 : FeatureValue

name = Present
glossAbbrev = PRES

 : FeatureValue

values

values

values

f
e
a
t
u
r
e
s

f
e
a
t
u
r
e
s

Figure 9 Instance diagram for SUBJ:3S.OBJ:1P.PAST

6.4. Limitations of the glossing model
While the glossing model is fairly flexible, there is at

least one behavior which is not handled at present. This
arises when there is an asymmetry between features and
glosses.

In the most common case, a mapping between a
feature value and a gloss string is one-to-one. For
example, if a language distinguishes masculine and
feminine genders, one plausible feature convention is to
have a binary feature GENDER, with the two values

MASCULINE and FEMININE; another plausible convention is
to have a binary feature FEMININE, with the two values +
and –. In either case, there is a direct mapping from the
two values to the glosses masculine and feminine (or their
abbreviations).

The mapping between glosses and features may
however fail to be one-to-one. For example, in languages
which have both first person plural inclusive and
exclusive forms, this distinction is usually indicated in the
glossing by adding the word ‘inclusive’ or ‘exclusive’ (or
some abbreviation) to the gloss for first person plural:
‘1PL.INCL’ and ‘1PL.EXCL’. A direct translation of

these glosses into morphosyntactic features would give
something like:

− EXCL
PL:NUM
1:PERS

and

+ EXCL
PL:NUM
1:PERS

where PERS(on) is a ternary feature having values 1, 2
and 3, and NUM(ber) is at least binary, having values SG
and PL (and for some languages, dual, trial, paucal etc.).
Under this feature system, it is necessary to introduce
feature co-occurrence constraints to prevent the
occurrence of one (or both) values of the EXCL(usive)
feature with other than first person plural.

A different feature system has often been proposed
(Matthews 1972, Anderson 1992, Noyer 1997) in which
person is encoded by the binary features SPEAKER and
HEARER. Under such a system, the features corresponding
to the glosses ‘1PL.INCL’ and ‘1PL.EXCL’ would be the
following:

−
+
+

SINGULAR
HEARER
SPEAKER

and

−
−
+

SINGULAR
HEARER
SPEAKER

respectively.7 Thus, there is no direct map between the
desired glosses and the morphosyntactic features.

We would need to add several capabilities to support
the situation where there is an asymmetry between glosses
and features. First, we would need to add rules to map
between features and glosses. Fairly simple rules should
be adequate, in which specific (extensionally specified)
morphosyntactic feature-value sets map to a gloss string.8

Second, we cannot expect to provide a definitive
morphosyntactic feature system which will satisfy
everyone; advanced users must therefore be allowed to
modify the morphosyntactic feature system, as well as the
mapping between the glosses and those features.

7. Conclusion
We have described a tool, the Morpheme Gloss

Assistant (MGA), which assists a language documenter to
assign standardized glosses to function morphemes. While
from the user’s point of view, this is a glossing tool, at the

7 The actual feature sets proposed by Matthews, Anderson and
Noyer differ in various respects from each other and from the
features shown in the diagram. Our focus here is not on the
correct features, but on the asymmetry between glosses and
features.
8 There are open questions here, including how whole glosses
would be parsed into separate gloss strings, and the possibility
that the features corresponding to two glosses within a gloss
string might conflict. We are aware of these issues, but do not
address them in this paper.

same time the MGA builds a morphosyntactic feature
system for the language and assigns morphosyntactic
features to the glossed morphemes. These feature
structures can be used by a morphological parser to
eliminate spurious parses, thereby increasing the precision
of parsing.

The MGA allows the user to choose glosses for a
particular language from a linguistically motivated but
language-independent ontology of morphosyntactic
properties, and maps these to a language-specific feature
system; it also allows additions by the user for language-
specific properties. In addition, the MGA performs the
mapping between language-specific feature values and
language-specific glosses.

We have specified the design of the language-
independent ontology and the language-specific feature
system, as well as the mapping between these and the
further mapping from feature structures to the language-
specific glosses, using the Unified Modeling Language
(UML). We have also sketched areas of our design which
need further research. Since the system is still incomplete,
we invite input.

8. References
Anderson, Stephen R. 1992. A-Morphous Morphology:

Cambridge Studies in Linguistics, 63. Cambridge, Eng.:
Cambridge University Press.

Binnick, Robert I. 1991. Time and the verb: a guide to
tense and aspect. New York: Oxford University Press.

Blake, Barry J. 2001. Case: Cambridge textbooks in
linguistics. Cambridge; New York: Cambridge
University Press.

Corbett, Greville G. 1991. Gender. Cambridge England;
New York: Cambridge University Press.

Corbett, Greville G. 2000. Number: Cambridge textbooks
in linguistics. Cambridge, UK; New York: Cambridge
University Press.

Hayashi, Larry S.; and John Hatton. 2001. “Combining
UML, XML and relational database technologies - the
best of all worlds for robust linguistic databases”. In
Proceedings of the IRCS Workshop on Linguistic
Databases , eds. Steven Bird; Peter Buneman; and Mark
Liberman, 115-124. Philadelphia: Institute for Research
in Cognitive Science.

Lewis, William; Scott Farrar; and D. Terence
Langendoen. 2001. “Building a Knowledge Base of
Morphosyntactic Terminology”. IRCS Workshop on
Linguistic Databases, University of Pennsylvania, 150-
156.

Matthews, P.H. 1972. “Huave Verb Morphology: Some
Comments from a Non-Tagmemic Viewpoint”.
International Journal of American Linguistics 38:96-
118.

Morse, Nancy L.; and Michael B. Maxwell. 1999. Cubeo
Grammar . Studies in the Languages of Colombia, 5.
Dallas, TX: Summer Institute of Linguistics.

Noyer, Rolf. 1997. Features, Positions, and Affixes in
Autonomous Morphological Structure: Outstanding
Dissertations in Linguistics. New York, NY: Garland.
[MIT dissertation, 1992; distributed by MIT Working
Papers in Linguistics].

Simons, Gary F. 1998. The nature of linguistic data and
the requirements of a computing environment for

linguistic research. In “Using Computers in Linguistics:
a practical guide”, John M. Lawler and Helen Aristar
Dry (eds.). London and New York: Routledge, pp. 10-
25.

Simons, Gary; and Larry Versaw. 1992. How to Use IT: A
Guide to Interlinear Text Processing. Dallas: Summer
Institute of Linguistics.

Thiesen, Wesley; and David J. Weber. In press. A
grammar of Bora. Dallas: SIL International.

