A Morphological Glossing Assistant

Mike Maxwell

Linguistic Data Consortium
3615 Market Street, Suite 200
Philadelphia, PA, 19104-2608, USA
maxwell @I dc.upenn.edu

Gary Smons

SL Internationdl
7500 W Camp Wisdom Road
Dallas, TX 75236

gary_smons@sil.org
Larry Hayashi

Canada Indtitute of Linguistics'SIL Internationa
7600 Glover Road,
Langley, BCV2Y 1Y1
larry_hayashi@sil.org

Abgtract

One of the tasks language documenters face is that of
assigning glosses to function morphemes, including affixes.
These glosses are typically used in marking up interlinear text
a a morpheme level. But without a morphological parser,
marking up interlinear text is tedious and error-prone. Idedlly,
a parser will be guided not only by the form and syntagmatic
properties of morphemes, but also by their morphosyntactic
properties (features).

We describe a system which smultaneously helps the linguist
use gdandard glosses for function morphemes, and assigns
corresponding morphosyntactic features to those morphemes.
These features can be used by a morphological (or syntactic)
parser. Our system defines a mapping between glosses and
features, as wdll as a way of extending the glosy fesature
system with properties which may have been overlooked. We
illustrate the operation of the system from both the user's
point of view and from an internal perspective.

1. Introduction

One of the tasks fidd linguists and other language
documenters face is that of assigning glosses to function
morphemes, including affixes. Among other
gpplications, these glosses are typicdly used in marking
up interlinear text @& a morpheme leve, as in the
following example (t&ken from Morse and Maxwell
1999, page 44-5):

Waro-bo-RE 'bar?
plant.sp-CLSround-OBJ aso

wo-lj-Ab? xoewe

%ek-STV-H/H.3M.Sg toucan-CLSflat

‘The toucan dso looks for a certan (species of)
plant.

Marking up interlinear text by hand is tedious and prone
to errors and inconsstencies. For that reason, interlinear
text tools normally provide a morphologica parser. But
if this parser is guided only by the form and
syntagmatic properties of morphemes, it may produce

spurious parses. In English, for example, there are
plaughly three affixes (or ditics) having the form —s,
two having the form —e, etc.; usudly only one of these
can plasbly be sad to occur in a sngle word, but
determining which one is correct can require
morphosyntactic constraints.

Languages meking more use of morphology than
English tend to have even more ambiguity in parsng. If
morphosyntectic congtraints are ignored, spurious
parses proliferate to the point where a parser becomes
more cumbersome than helpful. It is therefore desirable
to condrain the parser by the use of morphosyntactic
properties (features).

However, language documenters (whether fidd
linguists or native speskers) are often unfamiliar with
linguigticaly motivated morphosyntactic festure
systems. The result is a conflict: on the one hand, the
pasr needs a feature sysem; on the other, many
documenters (particularly in the early stages of their
work) do not want to have to build a possibly complex
feature system, but would rather work with glosses.

In addition, language documenters would benefit
from access to dandards for encoding the mesning of
functiond morphemes, i.e. dandard glosses (Lexicd
morphemes—stems and roots—are glossed with
generd terms, for which it would not be feasble to
provide standards.)

Theoreticd linguists have developed linguistically
based ontologies for such propeties as case marking,
gender systems, tense and aspect, etc. (Corbett 1991,
Corbett 2000, Binnick 1991, Blake 2001, and many
others). These ontologies can sdisfy the need for
dandards for forma glossng.! We propose an
additiona role for ontologies, namdy as the darting
point for building a morphosyntactic feature system,
thereby satisfying the need for a feature system to be
used by the morphologica parser (and in the future, by
a syntectic parser). This dual use is made possible by
the fact that there is—we dam—a farly direct
mapping between the ontology of morphosyntactic
properties and a morphosyntactic festure system, and an
even more direct mapping between morphosyntactic
features and glosses.

Much of the work of gpecifying a universa
terminology for morphosyntactic properties has been
done, or is in progress in various projects, such as the
E-MELD project (Lewis, Farar and Langendoen 2001),
and we intend to build on that foundation.

A mapping between a standard ontology and the
features (or ther correponding glosses) will dso
fadlitate comparison where gloses have divergent
meanings in different treditions of linguitic
description. For example, the term ‘absolutive has one
meaning for linguigs working on Nahuatl, and a
different meaning for linguits describing ergative
languages. Glosses can thus be defined by ther
mapping to a sandard ontology of morphosyntactic
properties.

We describe a system which assists the user in
glossing function morphemes, usng a Sandardized

1 By ‘forma’ glosses, we mean glosses such as ‘HAB' (for
‘habitud’) and ‘DEF (for definite), as opposed to such
informal glosses as ‘aways and ‘the’. Cf. Simons and
Versaw 1992 section 2.4.4.5 for this distinction

https://seek-STV-H/H.3M.Sg
mailto:larry_hayashi@sil.org
mailto:gary_simons@sil.org
mailto:maxwell@ldc.upenn.edu

ontology of conceptss The system simultaneoudy
provides a wdl-motivated but modifigble
morphosyntectic feature system, usdble by a
sophigticated morphologicad (or syntactic) parser. Our
system defines the mapping between glosses and
features, and a mapping from these back to the ontology
of morphosyntactic properties. The system dso
provides a way of extending the glosy feature system
with properties not contained in the origind ontology.
While the syssem does not directly modify the origind
ontology on the bass of modifications to the glosy
feature systam, we do envison a humanmediaed
feedback system for possble extensons or
modifications. (This feedback system is not, however,
discussed in this paper.)

In addition to describing this mapping, we describe
the user interface for glossing in section 3.

Our system is desgned to be a component of a
generd knowledge base for describing languages cdled
‘FidddWorks (Hayashi and Hatton 2001) This
knowledge base is based on many of the same
underlying concepts as CELLAR (the Computing
Environment for Linguidtics, Literacy and
Anthropological Research); see Simons (1998).

2. Overview of solution

A diagram giving an oveview of our solution is
shown in Fgure 1. At the heart of the approach is an
interactive tool cdled the Morphosyntectic Gloss
Assigtant. It takes two inputs. a general ontology of
morphosyntactic concepts (which it displays in a
‘Universal Gloss Ligt Viewe'), and a language-specific
feature system (which it displays in a ‘Language
Specific Gloss List Viewer'). Section 3 lludrates these
two viewers and describes how the Morphosyntactic
Gloss Assgtant works. Section 4 goes behind the
viewers to describe the conceptua model of the generd
ontology and the specific feature system.

When the user sdects a paticular gloss string from
the language-specific gloss list, the sysem adds the
corresponding festure to a feature structure. The full set
of features for a particular morphosyntactic form
condtitute a complete festure dtructure. The mapping
back from this festure structure to a gloss (which may
conds of severd individud gloss dgrings) for the
morphemeis described in section 5.

System data

Represented in

Ontology user interface as:

of
Concepts

... | Represented in
Language-specific | yser interface as:

Feature System

Morphosyntactic
Gloss Assistant

Universal
Gloss List

Viewer

Language
Specific

Gloss List

Viewer

e User selects glosses to
add to language
specific gloss list.

e The system adds to
the language-specific
feature system.

¢ User selects gloss
items to use in
constructed gloss.

¢ The system creates
an equivalent
Feature Structure

Represented in
Feature Structure user interface as;

System builds

Gloss String

constructed gloss
from Feature
Structure

Figurel. Overview of Morphologicd Glossing Assistant

=

L [T
i T a— ok 3
ikl ot 2P = !‘ﬁ 3
ghecs k- . | |
=- B4=d TEMEE & ; T
B PAET. pas Mumleer: Singular Fd
Bl FREE. presenl
= FLT dsrs Sl nuher 1f anaber th cefars 1 one member of a dengnaled clage
B FUT: e el L bt tht rel ez of i designiated gl
B () O Teesas
=[] #EFECT !
- [0 WODALITY e
] Vertal Agreoman| pae L] Waibes Gt Lni | 1
S Mo e Sumct Soiz 'ﬁ:ﬁ - Ece Promctfham Lkl e 7
= [@34 PERSOH Lis
E!f | First : S Bl St Agaeman = Feature: TENSE
- e = @ PEREON e IEE .
&t e i 0= 1 -t Absmann EE
Spadrilfigioiy 03 2. zarene Tipscngiion [Tarieir a paresic ol colegay, tpscaly mmbed o
B Rl B3 3-%hind |#es vl sl pmricsly Bt I s e o e v
O EEEE . - P HUMEER r ke ot e eobein i o b
AL AR B = singulur i Bt [first
[Al b Progecd ot Lisi | 4= P - Flurs Feshe Copaaly [jnans
=Ruli | Deplgeinign? Ao
Cavstnaisd phoes ioc -l OE PA=T. st Flagh ook 5 08t | el
| OE PRES-messm St e I
— DF FUIT - futurs = Yl IPasT.
Antepd Gias | Canal | Hap = [111 Haun-rednied =| Flama |
—] 4 | = Abbersisten [PAGT
all, R lnes Al PRET
- amgule (HUME) T | == |
LU
A
orabucisd oo k] [=iten | o
jy ST

[oot Gl | [ot | |

Heo

Fgure 2 Morphosyntactic Gloss Assistant Interface

3. Theuser interface

Fgure 2 presents the user inteface of the
Morphosyntactic Gloss Assistant. Features are noted via
the numbered baloons and are explained below.

1 dlicking on the ‘Master Gloss List’ tab reveds a
master ontology. Note that the most common
vdues ae displayed a the highest levd. The
user can find more less common vaues in the
“Other <feature name>" folders.

2 The Mader Gloss List includes documentation
for each item inthe list.

3 Once the user has sdlected items from the Master
Gloss Ligt, these items appear in the ‘Project
Gloss Lig’ tab. The user sdects items from here
to build glosses for particular morphemes.

4. Glosses sHected by the user are displayed below
the Project Gloss List. When the usr sdects a
gloss item, the system hbuilds a corresponding
feature sructure (hidden here).

5 The sysem creaes a gloss based on the feature
structure it has built.

6. The user can define wha the glosses and gloss
separators are for individua features and their
vaues.

The nature of the data models and the system
operations that teke place as the user caries out
interface actionsis described in sections 4 through 6.

4. Modelsof ontology, feature system and
feature structures

Reating feature dructures to gloss construction
requires a data mode that defines the following three
inter-related subsystems:

1. The feature structures carried by the morphemes
of the language;

2. Thefeature sysem of the language; and

3. Anontology of morphosyntactic concepts.

The user sdects from the ontology, and the system
crestes the gppropriate corresponding feature system
objects. The user can customize these objects to reflect
languege-specific properties. Once feature structure
types, features and ther vaues have been added to the
system, the user can then sdect from these to creste the
feature dtructures unique to each functor morpheme.
The usr can dso add additiond “glossspecific’
information to the feature system objects, ad the
system can then generate a of the festure structure as a
gloss.

In this section we look at each of these data models
indetall.

41. Themode of featurestructures

There are three types of morphemes that we want to
help the user to gloss:

1. Inflected variants of sems (eg. English men =
'man.PLY);

2. Inflectiond morphemes — paticularly affixes
and ditics (eg. English-s="PL"); and

3 Deivatiiond morphemes (eg. English —-ion =
'NMLZR' as an abbreviation for nominalizer).

The features and their specific vdues caried by
each of these morpheme types are defined in a ‘feature
sructure’. In the case of derivationd morphemes, two
feature dructures are defined representing the before
and dfter dtates of the derivation. For the purposes of
this paper we will discuss glossing one the first two
types of morphemes.

Figure 3 is a UML (Unified Modeling Languagef
representation of the feature dsructure modd. The
classes, atributes and relationships are described below.

feabureSpacs 1. *

FeatureStructure e FeahwreSpacificalion

tvpa : shring featureMame E_t-rng ;

value_ *icmlewaiw; ClosedValue

= |walue - shring

Figure 3. Datamodd for Feature Structures

FeatureStructure class

A FeaureStructure is a generd purpose ddaa
structure which identifies and groups together the
individua festures of a given word or morpheme.
FeatureStructures may be typed based on the kinds
features the particular Structure may take. The feature
specifications of the FeatureStructure are specified by
one or more FestureSpeifications (see below).

Featur eSpecification abstract class

A FeatureSpecification associates a festure name
with one or more vaues Each FeatureSpecification can
be one of two kinds, described below: a ComplexVdue
or a ClosadvVdue Both kinds indicate the feature for
which they specify avaue.

ComplexValue subclass

A ComplexVdue is a FeatureSpecification used for
FeatureStructures that have nesting. It contains another
FeatureStructure which isitsvalue.

ClosedValue subclass

A ClossdVdue is an ingantiation of one of the
FeatureVaues (captured as the vadue asocidtion) for a
paticular ClosedFesture (captured as the feature
association).

2 Refer to http://mww.holub.com/class/oo_design/uml.pdf for
a summary of UML notations. In UML, object classes are
represented as rectangles. Basic class ettributes are displayed
insde the rectangle. When a class is composed of other
classes, the relationship is indicated by a line with a diamond
on the composed class end. When one class refers to another
class, the relationship is indicated with a smple line. A line
with an arrow represents a subclass to superclass relationship.
Abstract classes have their class nameinitalics.

By way of illugtration, consider with the feature
structure in Hgure 4, which might be associated with a
verbd auffix:

SPERSON: third (i
BECT S) $
&NUMBER :singularty;

$PERSON :first gy U
BECT & a
&NUMBER: pluraljj

aTENSE : past

o

m>m_ibxm)8m>m>
e mY e} e e e e

Fgure4 Standard feature structure notation for third
person singular subject agreement and first person
plurd object agreement and past tense

We can represent this usng a FeatureStructure,
represented concretely by the XML fragment below?®.

<FeatureStructuretype="TrangtiveVerb">

<featureSpecs>
<ComplexValue feature="SUBJECT AGREEMENT">
<value>
<FeatureStructure type="Agreement">
<featureSpecs>

<ClosedFeature featureName="PERSON"
value="third"/>
<ClosedFeature featureName="NUMBER"
value="singular"/>
</featureSpecs>
</FeatureStructure>
</value>
</ComplexValue>
<ComplexValue feature="OBJECT AGREEMENT">
<value>
<FeatureStructure type="Agreement">
<featureSpecs>
<ClosedFeature featureName="PERSON"
value="first"/>
<ClosedFeature featureName="NUMBER"
value="plural"/>
</featureSpecs>
</FeatureStructure>
</value>
</ComplexValue>
<ClosedFeature featureName="TENSE"
value="past">
</ClosedFeature>
<ffeatureSpecs>
</FeatureStructure>

Figure 5. XML instantiation of feature structure

3 In this XML fragment, class names begin with capital letters.
Basic attributes are show as attributes of the XML element,
and relationships are shown as lower case XML elements.

http://www.holub.com/class/oo_design/uml.pdf

FeatureStructure _-_rea1u495pe:5 1

1

- [FaaturaSpecification | fealure

orm——— .:31?"-'5_ tpe value _ Cwﬂﬂﬂdua| ClosecdValue | valug
el Sl e SR 1 ||
N 1.« |1
FeatureStructure Type | JE3IUMES 1 * FeatureDem |
name : string Inarne siring I 1
abbreviation : string {abbreviation | string 1" [FeatureValue |
descriplion | siring |descriplion : siring I 1
! name : string
1 . i [¥8IUES | shhreviation : string
——r—] ! descriplion | string
e omplexfFeature |

ClosodFeature

Fgure6: Feeture System model

4.2. The modd of feature system

The modd thus far presented dlows the linguigt to
creste FeatureStructures without condraint: he can dedare
types, festures and values as needed. Idedly, however, the
building of FeatureStructures should be condgrained by
the grammar of the language That is, there exigts for each
languege a feature sysem that defines what types of
feature structures are possible, what features those types
capture, and what the possible values of those features are.

Figure 6 is a UML representation of our mode for
feature systems. The boxes in gray represent the
FestureStrudure classes that we just described. Note,
however, that what were simple string attributes in Figure
3 are now references to feature system objects in Fgure 6:
the FeatureSystem is thus used to condrain the
FeatureStructures. The classes of the FeatureSystem are as
follows:

FeatureSystem class

The FeatureSystem declares what
FeatureStructureTypes exis in the language. For the
purposes of morphosyntactic glossing (and parsing), we
assume that only one FestureSystem exids per language
data project.

FeatureStructureTypeclass

A FeatureStructureType is defined for each digtinct
type of FeatureStructure that exists in the daa
FeatureStructureTypes are given a name, description and
an optiond abbrevigion. In our glosing and parsng
system, FeatureStructures specify the morphosyntactic
features and values caried by function morphemes. Thus
a FeaureStructureType declaes what the possble
features (FeatureDefn) are for FeatureStructures of that

type.

FeatureDefn (abstract superclass)

Each feature of a FeatureStructureType can be one of
severd posshle kinds. All FeatureDefns specify the a
name (eg. PERSON), a dexription, and an abbreviation

(eg. PERS). Beow, we discuss the differences between
the two most important subclasses.

ClosedFeatur e subclass

A ClosedFeature has a finite set of possible vaues. For
example, in a paticular language, the festure PERSON
might specify the possble vadues of firs, second and
third.

ComplexFeature subclass

A ComplexFesture dlows for nested feature
sructures. Languages often specify the same feature more
than once on a single morpheme. For example, in Nahual,
the verb indicates person and number agreement with both
the subject and object (much like the FeatureStructure of
Figure 4).

FeatureValue

FestureVdues ae vdues of a paticua
ClosedFesture. They have a name, description, and
abbreviaion. For example a language might specify
sngular, dud, trid and plurd as possble FeatureVdues
for the NUMBER feature. For binary features, two
FeetureVdues ae usudly defined: a plus vdue and a
negativevaue.

4.3. Themode of ontology

The underlying model for the ontology is smple. It is
essentially an outline of concepts, in which the embedding
of one concept under another represents the “a kind of”
relationship. Fgure 7 shows a fragment of the ontology.
For ingance, working back from “close future’, the
ontology says that, “Close future is a kind of future, which
isakind of absolute tense, which is a kind of tense, which
is a kind of verbrdated propety, which is a kind of
morphosyntactic property.”

As an object in the database, each concept has a
number of attributes. An abbreviation proposes a standard
abbrevidion for use in glossing. A definition is avalable
for display in the user interface. This supports the
requirement that the glossing sysem help the user learn
dandard linguistic terminology. In addition, a unique

concept id is given which is copied when cregting the
festure system. This dlows for future crosslinguigic
comparisons of feature sysems againgt these ontologicd

concepts, even if the language-specific feature system
changes the name of the item.

nor phosyntactic property
noun-rel ated property
case
definiteness
noun cl ass
nunber
per son
semantic role
verb-rel ated property
aspect
nood and modal ity
polarity
switch reference
tense
absol ute tense
future
close future
hodi ernal future
renote future
past
present
absolute-rel ative tense
relative tense

Figure 7. Ontology as outline.

5. From Ontology to Feature System

There is one more atribute on an ontologicd conoept
which is the key to automaticadly generating a feature
system from an ontology. This is a type dtribute; it
specifies what the concept would correspond to in a
feature system. The possble values for type are ligted in
Table 1.

In the Morphosyntactic Gloss Assistant, the ontology
of concepts is displayed to the user in the Master Gloss
List viewer (see section 3). When the user sdects an item
from the ontology to use as part of the current gloss, the
type attribute instructs the MGA as to what it should do.
For ingance, referring back to the ontology fragment in
Figure 7, “absolute tense” is on type vGroup and sdecting
it should do nothing. On the other hand, “future’ and the
three more specific kinds of future below it are of type
valueg sdecting one of these should add the sdection as a
possbhle feaure vdue to the language-specific festure
system. The MGA climbs up the ontology to find the
concept of type feature that dominates the new \dug in
this case “tensg’, and adds it as a possble vaue of that
feature. When a feature (rather than a vadue is sdected)
the resulting festure sructure uses the built-in vaue any.
Table 2 summarizes the way in which the eight concept
types map onto the classes of the feature system.

Vdue Meaning

fsType The item corresponds to a festure
structure type.

fGroup The item is grictly for the purpose of
grouping rlated features to eese
navigation.

fedure Theitem correspondsto a feature.

complexN The item corresponds to a complex
feature that takes a feature structure of
type“nomind”.

complexV/ The item corresponds to a complex
feature that tekes a feature dtructure of
type “verba”.

vGroup The item is drictly for the purpose of
grouping related festure vdues to ease
navigation.

vaue Theitem correspondsto afesture vaue.

*e The item is not a possible gloss, but is a
cross-reference to the gloss tha should
be used instead.

Table 1 Type attribute possibilities
Canitbesdect- |Object classtogenerae

Concept type ed asagloss? in feature system

fsType No FestureStructureType

fGroup, No None

vGroup, see

feeture Yes ClosedFesture

vaue Yes FestureVaue

ComplexFesture that
coimplexN Yes tekesafea ure structure
of type “nomind”.
ComplexFesture that
complexV Yes takes afesture structure
of type“verbd”.

Table 2. Mapping from types to feature system elements

The ontology is actudly stored in an XML file This
makes it possible for the user to bad in ether a predefined
globad mager lig or a locdized lig that is more
appropriate to the language family being studied.

6. From Feature Structureto Gloss

In order to represent a FeatureStructure as a gloss, we
need to add a number of properties to the modd. These
additionsare cirded in Figure 8 and described below.

6.1. Additionsto the FeatureStructure mode

FeatureStructureTypeaddition

Because we want gloss gtrings of a given morpheme to
gopear in a cetan order (eg. for a trandgtive verb, the
gloss for subject agreement should precede the gloss for
object agreement, and the gloss for person before that for
number), the features that belong to a
FeatureStructureType are ordered. Operations on the
FeatureSpecifications within a FeatureStructure do not
require any knowledge of order; thus this addition is
purely for the sake of glossng.

1.* | FeatureValue

Ename string
{descriplion ; siring

I |alossabbrey © sinng
|

values

FeatureStructure Type |_| 1:.'amre? 1 :; Feaaturalelr
(orderedff——

name . sting name sling = lest

descriplion : string description - siring

abbrevaation - sinng "

|y glossAbbrey - siring
featuraSeparator - srng
rghtOfvalue - boolean
nghtValueSeparalor . sinng

M v

tipe | Complaxfeature |

" ClosedFeature

¢ This shape

enclosesglossing
additions.

Fgure 8. Additionsto FeatureSystem model for glossing

FeatureDefn additions

For most cases, a gloss string will correspond to a
feature vdue. But in some cases, it will be desrable for
the gloss dring to indicate the festure as wel. In
Tucanoan languages of Colombia, for example, most
concrete nouns bear a shape classfier, of which there may
be wdl over a hundred (Morse and Maxwell 1999). Many
classfiers have the basc meaning of a lexicd item, and it
may not obvious whether the gloss of such a morpheme
represnts a lexeme or a classfier auffix. A solution is to
use both the festure and its value as gloss papera-joka

‘paper-CLS!leef’, raher than ‘paperleaf’. For these
stuations, a glossAbbreviation associsted with a
FeatureDefn may be defined.

When a feature glossAbbreviation does gppear it can
be optiondly sepaaed from its vdue with a
featureSeparator (eg. the colon in SUBX3S). The
atribute rightOfValue dlows the glossAbbreviation to
occur to the right of the value, rather than to the left (eg.
3S:SUBJ, +PLURAL).

The rightValueSeparator defines what occurs to the
right of the gloss for a feature vaue if it is followed by
another feature value. For example, the features of tense
agpect and moddity ae often found dugered in
languages. One might want to separate esch of thee
vaues with a separator (eg. past tense, progressive aspect
and irredlis moddity represented as PAST.PROG.IRR).
The rightVaueSeparator on ComplexFeatures separates
the entire “complex” from the next festure (eg. the
periodsin SUBJ.3S.0BJ.1P.PAST).

FeatureValue addition

The FeatureVdue itsdf dso has a glossAbbreviation.
The user can choose to not display certain features by
leaving the atribute empty (eg. a user might want to do
thisfor default feature vaues such as present tense).

A dtugtion where the use of an empty
glossAbbreviation for a FeatureValue, and a nonempty
glossAbbreviation for a FeatureDefn, occurs when it is
desrable to indicate the generd type of information some
morpheme encodes, but not the details’ For example, in
Spanish the full gloss of the vebd suffix -0 might be
‘1SgRESIND’ (for ‘1st Singular Present. Indicative'),
but for some purposes the gloss ‘ Finite may be adequate.

4 Simons and Versaw 1992 (section 2.4.6.2) refer to such glosses
as ‘categories'.

We could specify dl the above behaviors on the
objects of the FeatureStructure itsdf — that is for each
morpheme that caries a feature dructure, we would
specify the abbreviations, separators, etc. for that specific
gloss. However, one of the gods of our gloss assgant is
to help the user be systematic in glossng. Thus, we
gecify the above behaviors on objects of the
FeatureSystem rather than on the FestureStructures.

6.2. Examples: model settings and resulting
gloss views

Figure 9 demonstrates how the festure structure model
is populated with data for the feature structure found in
Figure 4. Note that the feature structure objects (in gray)
contan no daa but refer to festure sysem objects
(indicated by the dotted Iiness). The ComplexFeatures,
ClosedFeatures and ClosedVaues specify how the gloss is
to be congructed, as described above. A period is used
here to ddimit the different gloss items except for the
ClosedFeature of person (in accordance with the LSA
Styleshest ©).

6.3. Adding glosses absent from the ontology

While we expect to provide a wide range of glosses
and corresponding morphosyntactic features, linguigtics is
not advanced enough to dlow us to provide every feaure
necessary for al languages.

Shgpe dasdfiers (mentioned above) ae a cae in
point: there ae numeous languages with shape
classfiers, and classfier systems ae in prirciple open-
ended. Thus Cubeo (a language of Colombid) haes
separate classfiers for threed-like, ropelike, and vinelike
objects, while Bora (a language of Peru) has classfiers for
objects typicdly hedd with the teeth, and for things
produced by cutting tools (Thiesen and Weber, in press).

Thus, we need to dlow users to add glosses, adong
with the corresponding festures. Our intention is for users
to enter ther glosses a a particular point in the hierarchy
of glosses, to use the gloss as the feature \alue, and to use
the super-node of that point in the hierarchy as the name
of the festure.

5 Note that thisis not astandard UML diagramming convention.
8 http:/Amww.Isadc.org/language/langstyl.html

http://www.lsadc.org/language/langstyl.html

Figure 2 illugrates the interface for this the user clicks
on the Add Value button and fills in the gloss information.
For example, suppose the user decides to add a new tense
goss In the figure, the user has dready specified one or
more tense gloses, thus the feature for tense is dready
present in his language-specific list. After sdecting this
feature from the lig, he can insert a new vaue with its
gloss.

In the same way, the user can dso add festures to a
feature type and specify both the gloss information for the
feature itsdf and its values. For instance, suppose a

: FeatureSpecification

: FeatureStructureType

name = TransitiveVerb

¢

hypotheticd language inflects concrete nouns for the color
of the object to which they refer. Since to our knowledge
no language has been described with this sort of marking,
we will not have induded glosses for color marking. The
user would need to create a node in the gloss hierarchy for
‘color inflection’; this would become the name of the new
feature. From there, the process proceeds as we have
sketched above for the case where the feature-levd node
was areedy present in the hierarchy.

: ComplexValue

: ClosedValue

’ : ComplexFeature

: FeatureSpecification

[~ [name = Subj Agr i
glossAbbrev = SUBJ
featureSeparator = colon
rightOfvalue = F

: ClosedValueg

rightValueSepartor = period

: ComplexValue

: ComplexFeature

: —
® FeatureSpeuflcatloq

: ClosedValue

name = Obj Agr
glossAbbrev = OBJ

featureSeparator = colon

: ClosedValue|

: ClosedValue

rightOfvalue = F

nw O~ C ~+~929 d® —

rightValueSepartor = period

: ClosedFeature

values
name = Tense >

L—glossAbbrev = none

featureSeparator = none — FeatureValue

: FeatureValue

rightOfValue = F name = Present

rightValueSepartor = period glossAbbrev = PRES|

name = Past
glossAbbrev = PAST|

: FeatureStructureType.

name = Agreement

¢

values
: ClosedFeature At

name = Person
glossAbbrev = none
featureSeparator = none
rightOfValue = 0

: FeatureValue

. FeatureValue

: FeatureValue

name = first

glossAbbrev =1

name = second
glossAbbrev = 2

name = third
glossAbbrev = 3

rightValueSepartor = none| |

P values

: ClosedFeature

name = Number

glossAbbrev = none - FeatureValue

: FeatureValue

featureSeparator = none
rightOfValue = F

name = singular
glossAbbrev = S

nw ®© - C —~+~9 ® —

name = plural
glossAbbrev = P

rightValueSepartor = period

Fgure 9 Instance diagram for SUBJ.3S.OBJ.1P.PAST

6.4. Limitations of the glossing model

While the glossng modd is farly flexible, there is at
leest one behavior which is not handled a present. This
aises when there is an asymmetry between features and
glosses.

In the most common case, a mapping betwesn a
feature vdue and a dloss dring is onetoone For
example, if a language diginguishes masculine and
feminine genders, one plausble feature convention is to
have a binay fesure GENDER, with the two values

MASCULINE and FEMININE, ancther plausible convention is
to have a binary feature FEMININE, with the two vaues +
and — In ether case, there is a direct mapping from the
two vaues to the glosses masculine ad feminine (or ther
abbreviations).

The mapping between glosses and features may
however fal to be one-to-one For example in languages
which have both firg person plurd incdusve and
exclusve forms, this digtinction is usudly indicated in the
glossing by adding the word ‘indusve or ‘exclusve (or
some abbreviation) to the gloss for first person plurd:
‘“IPLINCL’ and ‘1PL.EXCL’'. A direct trandadion of

these glosses into morphosyntactic features would give
something like:

éPERS:1 U

NUM PLU

& excL Y

€ a

and

éPERS:1 0
&NUM PLU
& EXCL {

where PERS(on) is a ternary feature having vaues 1, 2
and 3, and NUM(ber) is a least binary, having vaues SG
and PL (and for some languages, dud, trid, paucd etc.).
Under this feature system, it is necessary to introduce
festure co-occurrence condraints to prevent the
occurrence of one (or both) vaues of the EXCL(usve)
feature with other than first person plural.

A different feature system has often been proposed
(Matthews 1972, Anderson 1992, Noyer 1997) in which
person is encoded by the binary features SEAKER and
HEARER Under such a system, the features corresponding
to the glosses ‘1PL.INCL and ‘1PL.EXCL’ would be the
following:

é+SPEAKER U
& HEARER U
& SINGULARY

é-SPEAKER 0
& HEARER U
& SINGULARY

respectively.” Thus, there is no direct map between the
desired glosses and the morphosyntactic features.

We would need to add severa capabilities to support
the situation where there is an asymmetry between gloses
and festures. First, we would need to add rules to map
between features and glosses. Fairly smple rules should
be adequate, in which specific (extensondly specified)
morphosyntactic feature-value sets map to a gloss string.

Second, we cannot expect to provide a definitive
morphosyntactic feature system which will satisfy
everyone, advanced users must therefore be dlowed to
modify the morphosyntactic feature system, as well as the
mapping between the glosses and those features.

7. Conclusion

We have described a tool, the Morpheme Gloss
Assgant (MGA), which asssts a language documenter to
assign standardized glosses to function morphemes. While
from the user's point of view, this is a glossing tool, a the

7 The actual feature sets proposed by Maithews, Anderson and
Noyer differ in various respects from each other and from the
features shown in the diagram. Our focus here is not on the
correct features, but on the asymmetry between glosses and
features.

8 There are open questions here, induding how whole glosses
would be parsed into separate gloss strings, and the possibility
that the features corresponding to two glosses within a gloss
string might conflict. We are aware of these issues, but do not
address them in this paper.

same time the MGA builds a morphosyrtactic feature
system for the language and assigns morphosyntactic
features to the glossed morphemes. These feature
dructures can be used by a morphologicd parser to
diminate spurious parses, thereby increesing the precision
of parsing.

The MGA alows the user to choose glosses for a
paticular language from a linguigticaly motivated but
languege-independent ontology of morphosyntactic
properties, and maps these to a language-specific feature
system; it dso alows additions by the user for language-
specific properties. In addition, the MGA performs the
mapping between language-specific feature vaues and
languege-gpecific glosses.

We have oedified the desgn of the language-
independent ontology and the language-specific festure
system, as well as the mapping between these and the
further mapping from festure Sructures to the language-
secific gloses, usng the Unified Modding Language
(UML). We have dso sketched areas of our design which
need further research. Since the system is ill incomplete,
we invite input.

8. References

Anderson, Stephen R. 1992 A-Morphous Morphology:
Cambridge Studies in Linguigtics, 63. Cambridge, Eng.:
Cambridge University Press.

Binnick, Robert 1. 1991. Time and the verb: a guide to
tense and aspect. New Y ork: Oxford University Press.

Blake, Bary J 2001. Case Cambridge textbooks in
linguigtics ~ Cambridgg New York: Cambridge
University Press.

Corbett, Greville G. 1991. Gender. Cambridge England;
New Y ork: Cambridge University Press.

Corbett, Greville G. 2000. Number: Cambridge textbooks
in linguigtics. Cambridge, UK; New York: Cambridge
University Press.

Hayashi, Larry S; and John Hatton. 2001. “Combining
UML, XML and relationd database technologies - the
best of al worlds for robust linguisic databases’. In
Proceedings of the IRCS Workshop on Linguistic
Databases, eds. Steven Bird; Peter Buneman; and Mark
Liberman, 115124. Philaddphia Inditute for Research
in Cognitive Science.

Lewis, William; Scott Fara; ad D. Teence
Langendoen. 2001. “Building a Knowledge Base of
Morphosyntactic Terminology”. IRCS Workshop on
Linguigic Databases, Universty of Pennsylvania, 150-
156.

Matthews, P.H. 1972. “Huave Verb Morphology: Some
Comments from a Non-Tagmemic Viewpoint”.
International Journal of American Linguigtics 38:96-
118.

Morse, Nancy L.; and Michae B. Maxwel. 1999. Cubeo
Grammar. Sudies in the Languages of Colombia, 5.
Dallas, TX: Summer Ingtitute of Linguistics.

Noyer, Rolf. 1997. Features Podtions and Affixes in
Autonomous Morphological Sructure Outstanding
Dissertations in Linguigtics. New York, NY: Garland.
[MIT dissertation, 1992; distributed by MIT Working
Papersin Linguigtics].

Smons, Gary F. 1998. The nature of linguidic data and
the requirements of a computing environment for

linguidic research. In “Usng Computers in Linguigtics
a practical gquide’, John M. Lawler and Heen Arigar
Dry (eds). London and New York: Routledge, pp. 10-
pis)

Simons, Gary; and Lary Versaw. 1992. How to Use IT: A
Guide to Interlinear Text Processing. Ddlas Summer
Ingtitute of Linguistics.

Thiesen, Wedey; and David J Weber. In press A
grammar of Bora. Ddlas: SIL Internetiond.

