A tutorial
on finite-state
text processing

Kyle Gorman
City University of New York
Google Inc.



Outline

Formal preliminaries
® OpenfFst and friends:

® the past...
® _..and the future...

Key FST algorithms

A few worked examples



Formal preliminaries



(image: credit: Wikimedia Commons)



turn-knob:g

insert-coin:e turn-knob:e

g:emit-gumball




Sets

A set is an abstract, unordered collection of distinct objects, the
members of that set. By convention capital italic letters denote sets and
lowercase letters to denote their members. Set membership is indicated
with the € symbol; e.g., x € X is read “x is a member of X". The empty set
is denoted by @.



Subsets

A set X is said to be a subset of another set Y just in the case that every
member of X is also a member of Y. The subset relationship is indicated
with the C symbol; e.g., X C Y is read as “X is a subset of Y”.



Union and intersection

® The union of two sets, X U Y, is the set that contains just those
elements which are members of X, Y, or both.

XUY:={x:xeXVxeY}

® The intersection of two sets, X N Y, is the set that contains just
those elements which are members of both X and Y.

XNY:={x:xEXAXEY}



Strings

Let X be an alphabet (i.e., a finite set of symbols). A string (or word) is
any finite ordered sequence of symbols such that each symbol is a
member of 2. By convention typewriter text is used to denote strings.
The empty string is denoted by €. String sets are also known as
languages.



Concatenation and closure

® The concatenation of two languages, X Y, consists of all strings
formed by concatenating a string in X with a stringin Y.

XY:={xy:xeXyevY}

® The closure of a language, X*, is an infinite language consisting of
zero or more “self-concatenations” of X with itself.

X ={efux'ux?uxd...
={e} UXUXXUXXX...



Regular languages (Kleene, 1956)

® The empty language @ is a regular language.
® The empty string language {e} is a regular language.
® Ifs € X, then the singleton language {s} is a regular language.

® |f X is a regular language, then its closure X* is a regular language.
® |f X, Y are regular languages, then:

® their concatenation X Y is a regular language, and

® their union X U Y is a regular language.

® Other languages are not regular languages.



Regular languages in the 20th century

Regular languages were first defined by Kleene (1956) and popularized in
part by their discussion in the context of the Chomsky(-Schiitzenberger)
hierarchy (e.g. Chomsky and Miller, 1963). Not long afterwards this was
followed by two seemingly negative results:

® Traditional phrase structure grammars belong to a higher class in
the hierarchy, the context-free languages

® The class of regular languages are not “learnable” under Gold’s
(1967) notion of language identification in the limit.



Regular languages in the 21st century

However, an enormous amount of linguistically-interesting phenomena
can be described in terms of regular languages (and regular relations)...
And, many of these phenomena fall into provably learnable subsets of
the regular languages (e.g. Heinz, 2010; Rogers et al., 2010; Chandlee

et al., 2014; Jardine and Heinz, 2016; Chandlee et al., 2018).



Finite-state acceptors (after Mohri, 1997)

An finite-state acceptor (FSA) is a 5-tuple consisting of:

® 3 set of states Q,

® ainitial (or “start”) state s € Q,

® aset of final states F C Q,

® analphabet 2, and

® atransition relation § mapping Q X (X U {e}) onto Q.



Acceptance

Let us extend & using the following recurrence:
Vg € Q,Yw € *,Va € X, 6(g,wa) = 6(6(q, w), a)

Then, a string w € X* is accepted by the FSA just in the case that
(s, w) € F.






Regular relations

In many cases we are not interested in sets of strings so much as
relations or functions between sets of strings.

The cross-product of two languages, X X Y is one such relation: it maps
any string in X onto any stringin Y.

XXY={xP—y:xeXyeYVY}

Subsets of the cross-product of two regular languages are known as
regular relations.



Finite-state transducers

A finite-state transducer (FST) is a 7-tuple consisting of:

a set of states Q,

a initial (or “start”) state s € Q,

a set of final states F C Q,

an input alphabet %,

an output alphabet A,

a transition relation & mapping Q X (X U {e}) onto Q.
an output relation o mapping Q X (X U {e}) onto A™.



Transduction

We can similarly extend o using the following recurrence:
Vq € QVw e X", Va € X, o(s,wa) = o(q,w) o(5(q, w), a)

As before, a stringw € X* is transduced just in the case that 6(s, w) € F,
and in this case the output is given by o (s, w); that is, w — o (s, w).






Weights

We can also add weights to transitions (and final states) subject so long
as the weights and their operations define a semiring (Mohri, 2002).



OpenFst and friends



Ancient forebears

® The Xerox toolkit (XFST; Beesley and Karttunen 2003)
® The AT&T toolkit (FSM; Mohri et al. 2000)



Competitors (see Gorman, 2016)

Carmel (Knight and Graehl, 1998)
® HFST (Lindén et al., 2013)

Foma (Hulden, 2009)

Kleene (Beesley, 2012)



OpenfFst (Allauzen et al., 2007)

OpenFst is a open-source C++11 library for weighted finite state

transducers developed at Google. Among other things, it is used in:
® Speech recognizers (e.g., Kaldi and many commercial products)
® Speech synthesizers (as part of the “front-end”)

® Input method engines (e.g., mobile text entry systems)



OpenfFst design

There are (at least) four layers to OpenFst:

® A C++template/header library in <fst/*.h>

® A C++ “scripting” library in <fst/script/+.{h,cc}>
CLI programs in /usr/local/bin/fstx

® A Python extension module pywrapfst



OpenfFst extensions |

./configure...

—enable-compress (Mohri et al,, 2015): FST compression

—enable-linear-fsts (Wu et al, 2014): encodes linear
models as WFSTs

—enable-pdt (Allauzen and Riley, 2012): pushdown transducer
reprsentations and algorithms

—enable-ngram-fsts (Sorensen and Allauzen, 2011): LOUDS
compression for n-gram models encoded as WFSAs



OpenGrm |

® Baum-Welch (Gorman, forthcoming): CLI tools and libraries for
performing expectation maximization on WFSTs

® NGram (Roark et al., 2012): CLI tools and libraries for building
conventional n-gram language models encoded as WFSTs

® Thrax (Roark et al., 2012): DSL-based compiler for WFST-based
grammar development

® SFst (Allauzen and Riley, 2018): CLI tools and libraries for building
stochastic FSTs

All these are available under an Apache 2.0 license, and all use the same
binary serialization as OpenFst.



OpenfFst conventions |

® FST and symbol table objects implement copy-on-write (COW)
semantics; copy methods and constructors make shallow copies
and run in constant-time.

® |terators are invalidated by mutation operations.

® Both acceptors and transducers, weighted or unweighted, are
represented as weighted transducers.

® FST state IDs are integers starting at zero.

® At most one state can be designated as a start state; an empty
FST—one with no states—has a start state of -1.

® Arc labels are non-negative integers; 0 is reserved for € and
negative integers are reserved for implementation.

® Every state is associated with a final weight; non-final states have
an infinite final weight 0 and final states have a non-0 weight.



Pynini conventions

Some algorithms are inherently constructive; others are naturaly
destructive. Pynini adopts the following conventions:

® Constructive algorithms are implemented as module-level
functions which return a new FST.

® Destructive algorithms are implemented as instance methods
which mutate the instance they're invoked on. Furthermore:
® where possible, destructive methods return self so that they can
be chained, and
® destructive algorithms also can be invoked constructively using
module-level functions.



WFST algorithms



Concatenation

The concatenation AB can computed destructively (on A) using
A.concat(B) or constructively using A + B. The algorithm works
by adding an e-arc from every final state in A to the initial state of B.



Union

The union A | B can be computed destructively (on A) using
A.union(B) or constructively using A | B.The algorithm
introduces an e-arc from the initial state of A to the initial state of B.



Closure

The closure A* can be computed destructively using A. closure(),
or constructively using closure(A). The algorithm introduces e-arcs
from all final states to the initial state.



Composition

The composition A o B can be computed constructively using A @ B or
compose(A, B).By default, non-(co)accessible states are trimmed.



Cross-product

The cross-product function transducer constructively computes the

cross-product transducer T = A X B. It is defined roughly as follows:
def _transducer(ifsta: Fst, ifst2: Fst) -> Fst:
upper = arcmap(ifsti, map_type="output_epsilon")
lower = arcmap(ifst2, map_type="input_epsilon")
return compose(upper.rmepsilon(),
lower.rmepsilon(),
compose_filter="match")



Optimization

An WFST is said to be optimal if it is minimal. Minimization algorithms,
in turn, require that their input also be deterministic (and they preserve
that property). In Pynini, FSt objects have a built-in method
optimize which applies a generic routine for optimization.



Optimization for unweighted acceptors

def _optimize(fst: Fst) -> Fst:

opt_props = NO_EPSILONS | I_DETERMINISTIC

props = fst.properties(opt_props, True)

fst = fst.copy()

if not props | NO_EPSILONS:
fst.rmepsilon()

if not props | I_DETERMINISTIC:
fst = determinize(fst)

return fst.minimize()

This will produce an optimal FSA for any acyclic acceptor over an
idempotent semiring.



Advanced optimization

However, some weighted cyclic FSAs are not determinizable (Mohri,
1997, 2009). Therefore we determinize and minimize the FSA as if it were
an unweighted acceptor. Similarly, not all transducers are
determinizable. We instead determinize and minimize the WFST as if it
were an unweighted acceptor. In both cases, we also perform arc-sum
mapping as a post-process.



Rewrite rule compilation

The context-dependent rewrite rule compilation function cdrewrite
constructively expands an SPE-like phonological rule specification into
a transducer using the Mohri and Sproat (1996) algorithm.



Shortest path

The shortest path function shortestpath constructively computes
the (n-)shortest paths in a WFST. In case of ties, library behavior is
deterministic but implementation-defined. Unique paths can be
obtained by determinizing the WFST on the fly.



Examples



Rule-based g2p

Consider a simple example: (Latin American, mainland) Spanish
grapheme-to-phoneme conversion:
https://gist.github.com/kylebgorman/
124909662f1abdabgag97efe6237c557d


https://gist.github.com/kylebgorman/124909662f1abdab9a97ef06237c557d
https://gist.github.com/kylebgorman/124909662f1abdab9a97ef06237c557d

Pair n-gram g2p

Following Novak et al. (2012):

Train a unigram grapheme-to-phoneme aligner using expectation
maximization

Using the unigram aligner, decode the training data using the
shortest-path algorithm to obtain best alignments

Encode the alignments as an unweighted acceptor

Train a conventional high-order n-gram model on the encoded
alignments

Decode the alignments to obtain a weighted transducer



A Breakfast Experiment™

® Pronunciations from the Santiago Lexicon (SLR34) of Spanish
pronunciations:

® 73k training words
® ok development words
® 9k test words

® 10 random starts of the aligner (trained with the Viterbi
approximation)

® Kneser-Ney smoothing

® N-gram order tuned on the development set (nothing else tuned)

® N-gram model shrunk down to 1m n-grams using relative entropy
pruning (Stolcke, 1998)

Results (4-gram model): LER = .0004, WER = .0024.



Speech grammars at Google

Pynini is used extensively at Google for speech-oriented grammar
development, e.g.:

® Gorman and Sproat (2016) propose an algorithm—implemented in
Pynini—which can induce a number grammars from a few-hundred
labeled examples.

® Ritchie et al. (2019) describe how Pynini is used to build “unified”
verbalization grammars that can be share by both ASR and TTS.



Constrained sequence mapping at Google

® Ng et al. (2017) constrain a linear-model-based verbalizers with FST
covering grammars.

® Zhang et al. (2019) constrain RNN-based verbalizers with FST
covering grammars.



Some recommended reading

® Sets and strings: Partee et al. 1993, ch. 13
® \WFSTs: Mohri 1997, 2009

® Optimizing composition: Allauzen et al. 2010

Shortest distance and path problems: Mohri 2002



More information

http://pynini.opengrm.org



References |

C. Allauzen and M. Riley. A pushdown transducer extension for the
OpenFst library. In CIAA, pages 66-77, 2012.

C. Allauzen and M. Riley. Algorithms for weighted finite automata with
faillure transitions. In CIAA, pages 4658, 2018.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: a
general and efficient weighted finite-state transducer library. CIAA,
pages 11-23, 2007.

C. Allauzen, M. Riley, and ). Schalkwyk. Filters for efficient composition of
weighted finite-state transducers. In CIAA, pages 28-38, 2010.

K. R. Beesley. Kleene, a free and open-source language for finite-state
programming. In 10th International Workshop on Finite State Methods
and Natural Language Processing, pages 50-54, 2012.

K. R. Beesley and L. Karttunen. Finite state morphology. CSLI, Stanford,
CA, 2003.



References Il

J. Chandlee, R. Eyraud, and ). Heinz. Learning strictly local subsequential
functions. Transactions of the Association for Computational
Linguistics, 2:491-503, 2014.

J. Chandlee, J. Heinz, and A. Jardine. Input strictly local opaque maps.
Phonology, 35(2):171-205, 2018.

N. Chomsky and G. A. Miller. Introduction to the formal analysis of
natural languages. In R. D. Luce, R. R. Bush, and E. Galanter, editors,
Handbook of mathematical psychology, pages 269-321. Wiley, New
York, 1963.

E. M. Gold. Language identification in the limit. Information and Control,
10(5):447-474, 1967.

K. Gorman. Pynini: a Python library for weighted finite-state grammar
compilation. In ACL Workshop on Statistical NLP and Weighted
Automata, pages 75-80, 2016.



References Il

K. Gorman and R. Sproat. Minimally supervised number normalization.
Transactions of the Association for Computational Linguistics, 4:
507-519, 2016.

J. Heinz. Learning long-distance phonotactics. Linguistic Inquiry, £1(s):
623-661, 2010.

M. Hulden. Foma: a finite-state compiler and library. In EACL, pages
29-32, 20009.

A. Jardine and ). Heinz. Learning tier-based strictly 2-local languages.
Transactions of the Association for Computational Linguistics, 4:
87-98, 2016.

S. C. Kleene. Representations of events in nerve nets and finite
automata. In C. E. Shannon and J. McCarthy, editors, Automata
studies, pages 3-42. Princeton University Press, Princeton, 1956.

K. Knight and J. Graehl. Machine transliteration. Computational
Linguistics, 24(4):599-612, 1998.



References IV

K. Lindén, E. Axelson, S. Drobac, S. Hardwick, J. Kuokkala, J. Niemi, T. A.
Pirinen, and M. Silfverberg. HFST: a system for creating NLP tools. In
SCFM, pages 53-71, 2013.

M. Mobhri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269-311, 1997.

M. Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):
321-350, 2002.

M. Mohri. Weighted automata algorithms. In M. Droste, W. Kuich, and
H. Vogler, editors, Handbook of weighted automata, pages 213-254.
Springer, New York, 2009.

M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In ACL, pages 231-238, 1996.



References V

M. Mohri, F. Pereira, and M. Riley. The design principles and algorithms
of a weighted grammar library. Theoretical Computer Science, 231(1):
17-32, 2000.

M. Mohri, M. Riley, and A. T. Suresh. Automata and graph compression. In
IEEE International Symposium on Information Theory, pages
2989-2993, 2015.

A. H. Ng, K. Gorman, and R. Sproat. Minimally supervised
written-to-spoken text normalization. In ASRU, pages 665-670, 2017.

J. Novak, N. Minematsu, and K. Hirose. WFST-based
grapheme-to-phoneme conversion: open-source tools for alignment,
model-building and decoding. In 10th Workshop on Finite State
Methods and Natural Language Processing, pages 45-49, 2012.

B. H. Partee, A. ter Meulen, and R. E. Wall. Mathematical methods in
linguistics. Kluwer, Dordrecht, 1993.



References VI

S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, N. Bampounis,
B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. Unified verbalization
for speech recognition & synthesis across languages. In INTERSPEECH,
pages 3530-3534, 2019.

B. Roark, R. Sproat, C. Allauzen, M. Riley, ). Sorensen, and T. Tai. The
OpenGrm open-source finite-state grammar software libraries. In ACL
System Demonstrations, pages 61-66, 2012.

J. Rogers, ). Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and
S. Wibel. On languages piecewise testable in the strict sense. In
Conference on Mathematics of Language, pages 255—265, 2010.

J. Sorensen and C. Allauzen. Unary data structures for language models.
In INTERSPEECH, pages 1425-1428, 2011.

A. Stolcke. Entropy-based pruning of backoff language models. In DARPA
Broadcast News And Understanding Workshop, pages 270-274, 1998.



References VII

K. Wu, C. Allauzen, K. Hall, M. Riley, and B. Roark. Encoding linear models
as weighted finite-state transducers. In INTERSPEECH, pages

12581262, 2014.

H. Zhang, R. Sproat, A. H. Ng, F. Stahlberg, X. Peng, K. Gorman, and
B. Roark. Neural models of text normalization for speech
applications. Computational Linguistics, 45(2):293-337, 2019.



	References

