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Abstract 
Not every phone, word, or sentence is equally good for 
assessing language proficiency. We investigated three 
phonetic factors that may affect automatic scoring of 
Mandarin proficiency – phoneme, phone boundary, and tone. 
Results showed that phone boundaries performed the best, and 
within-syllable boundaries were better than cross-syllable 
boundaries. The retroflex consonants as well as the vowel 
following these consonants outperformed the other phonemes. 
Tone0 and Tone3 outperformed the other tones, and ditone 
models significantly improved the performance of Tone0. 
These results suggest that phone boundary models and 
phoneme- and tone- dependent scoring algorithms should be 
employed in automatic assessment of Mandarin proficiency. It 
may also be helpful to separate phoneme and tone scoring 
prior to the combination of individual scores, as we found that 
the worst phoneme and the best tone, with respect to automatic 
scoring of Mandarin proficiency, appeared in the same word. 

Index Terms: spoken language proficiency, automatic 
scoring, goodness of pronunciation 

1. Introduction 
Automatic scoring of spoken language proficiency has 

been widely applied in language tests and computer assisted 
language learning (CALL) [1,2]. The common practice is to 
build HMM-based acoustic models using a large amount of 
“standard” speech data. To assess an utterance, pronunciation 
scores such as log likelihood scores and posterior probabilities 
are calculated by performing speech recognition (or forced 
alignment if the sentence is known) to the utterance based on 
the pre-trained acoustic models [3-6]. Prosody scores, e.g., 
duration, F0, and pauses, have also been shown important [7, 
8]. These individual scores are combined with statistical 
models such as linear regression, SVM, and neural network to 
produce an overall score for the test utterance [9].  

In prior work [10], we demonstrated that not every 
sentence is equally good for assessing language proficiency, 
and the performance of an automatic scoring system could be 
significantly improved by excluding “bad” sentences from the 
scoring procedure. Much research is needed to understand the 
linguistic factors that determine the goodness of a sentence for 
automatic proficiency scoring. In this study, we investigate 
three phonetic factors that may affect automatic scoring of 
Mandarin proficiency – phoneme, phone boundary, and tone. 

It is well known that some phonetic contrasts are more 
difficult in language learning. The retroflex consonants (/zh, 
ch, sh, r/) in Mandarin Chinese, for example, are difficult to 
learn for many speakers whose first language does not have 

retroflex sounds. The pronunciation of these consonants is a 
prominent cue for native speakers to perceive accent. Phone 
boundaries may also contain useful information about a 
speaker’s language proficiency. The timing of voicing in stop 
consonants, which is measured by voice onset time (VOT), is 
a boundary-bound phonetic feature that has been extensively 
studied in linguistics [11, 12]. The VOT of stops varies across 
languages. Individuals who learn an L2 later in life are often 
failed to produce consonants with authentic VOT values in L2 
[13]. Finally, the non-native production of tone is probably the 
most salient characteristic of foreign accent in Mandarin 
Chinese. Chinese speakers may find less difficult in acquiring 
Mandarin tones because there is usually a systematic mapping 
between Mandarin tones and the tones in their first language. 
Nonetheless, the production of tone is still problematic to less 
fluent speakers and, some tones may be more likely to bear 
accent than others. 

In the following sections we first introduce the dataset in 
Section 2. Section 3 and 4 describe the experiments and report 
the results, on phoneme and phone boundary and on tone, 
respectively. Finally, Section 5 is conclusions. 

2. Data 
We used a dataset of Putonghua Shuiping Ceshi (PSC) 

from Beijing Normal University. PSC is the national standard 
Mandarin proficiency test in China, which is taken by several 
million people each year. The test consists of four parts: The 
first two parts are to read 100 monosyllabic and 50 disyllabic 
words; the third part is to read an article of 300 characters, 
randomly selected from a pool of 60 articles; and the last part 
is to speak freely on a given topic. The four parts are graded 
separately with a numeric score, and the total score (out of 100 
points) is converted to a categorical proficiency level, out of 
seven levels. 

Our dataset consists of recordings of ~800 college 
students at Beijing Normal University who took the PSC test 
in 2011 and the grades they received on the test. We only used 
the part of article reading in this study. The students who read 
an article being selected for less than 9 other students (i.e., the 
total number of students reading that article is less than 10) 
were excluded. The students who had proficiency scores in the 
lowest two levels were also excluded. The final dataset 
contains 604 speakers reading 42 articles. Each speaker was 
graded by two examiners. The average of the two examiners’ 
scores on the part of article reading was used as the speaker’s 
proficiency score.  

We selected 143 speakers who had the best proficiency 
scores in the dataset to train models of “standard” speakers. 
The rest 461 speakers were tested using the “standard” 
models. The goodness of pronunciation of phoneme, phone 
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boundary, and tone was calculated by an approximation of its 
posterior probability given the data and model. The correlation 
between the goodness of pronunciation scores and the 
examiners’ scores on the 461 speakers was used to determine 
the usefulness of a phone, phoneme boundary, and tone in 
automatic scoring of Mandarin proficiency. A greater 
correlation is expected if a phone, phone boundary, or tone 
bears more information about language proficiency. Detailed 
methods and results are described below.  

3. Phoneme and Phone Boundary 

3.1. Training acoustic models 

GMM-HMM acoustic models of phonemes (initials and 
finals) and phone boundaries were trained on the utterances of 
the 143 “standard” speakers. While researchers have disagreed 
on the vowel phonemes in Mandarin Chinese, the inventories 
of initials and finals in the language are largely 
straightforward. The initials are consonants. A final in 
Mandarin Chinese may consist of one or more vowels (or 
vowels and glides, depending on the adopted phonological 
analysis), with or without a nasal coda. The final /i/ has three 
pronunciation variants, often transcribed as [ɿ] (when 
following an alveolar fricative or affricate), [ʅ] (when 
following a retroflex fricative or affricate), and [i] (in all other 
contexts). The three variants were treated as different finals, /i/ 
for [i], /ii/ for [ɿ], and /iii/ for [ʅ]. In our acoustic models, 
initials, monophthong finals (/a, e, i, ii, iii, u, v/), and silence 
were 3-state HMMs, all other finals (including diphthongs, 
triphthongs, and nasal-coda finals) were 5-state HMMs.  

The phone boundary models were a special 1-state HMM 
(as shown in Figure 1), in which the state cannot repeat itself. 
Therefore, a boundary can have one and only one state 
occurrence, i.e., aligned with only one frame. In prior work 
[14, 15], we demonstrated that employing explicit phone 
boundary models within the HMM framework could 
significantly improve forced alignment accuracy. 

 

 
Figure 1: Special 1-state HMM for phone boundaries 

with transition probabilities a11 = 0 and a12 = 1. 

The special 1-state phone boundary HMMs were 
combined with phone HMMs. Given a phonetic transcription, 
phone boundaries were inserted between phones. For example, 
“sil i g e sil” became “sil sil_i i i_g g g_e e e_sil sil”. The 
boundary states were tied through decision-tree based 
clustering during the training procedure, similar to triphone 
state tying in speech recognition. The acoustic models were 
trained on the standard 39 PLP (Perceptual Linear Prediction) 
features extracted with 25ms Hamming window and 10ms 
frame rate, using the HTK Toolkit. 

3.2. Computing goodness of pronunciation 

Following the method in [5], we computed a goodness of 
pronunciation score for every phone and phone boundary in 
the utterances of the 461 test speakers. The idea is to find the 
posterior probability of a phone p given its acoustic segment 
O(p), P(p|O(p)), which can be approximated by the likelihood of 
O(p) corresponding to phone p, divided by the maximum 
likelihood of  O(p): 

 

            GOP(p) = log p(o( p) | p)
max pq∈Q (o

( p) | q)
 (1) 

 
where Q is the set of all phone and boundary models. The 
acoustic segment boundaries of O(p) and the corresponding 
likelihood (the numerator) was determined by forced 
alignment. To compute the maximum likelihood of O(p) (the 
denominator), all test utterances were recognized using the 
acoustic models and an unconstrained phone and boundary 
loop. The likelihood of O(p) corresponding to the best 
hypothesis within its boundaries (it may contain more than one 
phones or boundaries) was used to approximate its maximum 
likelihood.  

The goodness of pronunciation scores computed from (1) 
are zero or negative. They are expected to have a positive 
correlation with human scores: A lower goodness of 
pronunciation score suggests that the phone or boundary fits 
the “standard” models less well hence should receive a lower 
proficiency score. 

3.3. Results 

For every speaker in the test set, we calculated his/her 
mean goodness of pronunciation score on every phoneme. The 
phone boundaries were grouped into two types: within-syllable 
(i.e., boundaries between an initial and a final) and cross-
syllable (i.e., boundaries between a final and an initial), and a 
mean goodness of pronunciation score was calculated for each 
type. For each phone and boundary type, we then computed 
the correlation between the 461 speakers’ mean goodness of 
pronunciation scores and their proficiency scores (461 pairs of 
scores). The results are listed in Table 1. Only the phones that 
appeared in every test speaker’ utterances are included.  

We can see from Table 1 that the correlation varies 
greatly across phonemes. The two boundary types have the 
highest correlations, suggesting that phone boundaries are 
more helpful than phonemes in automatic proficiency scoring. 
Within-syllable boundaries work better than cross-syllable 
boundaries. Among the phonemes, the retroflex consonants, 
/zh, ch, sh/, and the vowel following these consonants, /iii/, are 
better than the others. The vowel /e/ is the only phoneme that 
has a negative correlation, although the correlation is not 
significant. /e/ appears in the possessive particle “的” (de0) in 
Mandarin Chinese, which is the most frequent word in the 
language. In our dataset, there are 23,501 /e/ tokens, 15,919 
(64.7%) of the tokens were from the word “的” (de0). “的” 
(de0) has a neutral tone, and its vowel is similar to the schwa 
in English. 
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Table 1. Correlations between goodness of pronunciation and 
proficiency scores: on phoneme and phone boundary. 

Phone or 
boundary 

Correlation 
(Pearson’s r) 

Phone or 
boundary 

Correlation 
(Pearson’s r) 

within-syl 0.472 g 0.157 
cross-syl 0.445 r 0.144 
iii 0.422 b 0.141 
sh 0.383 uan 0.126 
zh 0.327 m 0.125 
s 0.277 iao 0.120 
a 0.271 iu 0.114 
ch 0.269 ai 0.114 
ian 0.256 ei 0.112 
i 0.245 n 0.111 
ing 0.238 eng 0.110 
d 0.225 en 0.102 
h 0.225 ie 0.100 
an 0.224 k 0.060 
l 0.214 ong 0.054 
z 0.210 uo 0.052 
q 0.202 ao 0.045 
t 0.194 iang 0.041 
j 0.192 u 0.036 
f 0.190 ang 0.029 
in 0.182 v 0.019 
x 0.179 ii 0.007 
ui 0.174 e -0.004 

*The correlations lower than 0.12 are not significant. 

 

4. Tone 

4.1. Training tone models 

There are five tones in Mandarin Chinese, Tone 1 
through Tone 4, and the neutral tone, Tone 0. GMM models 
were trained on each of the five tones using the 143 “standard” 
speakers’ utterances. Tone boundaries, which are the same as 
syllable boundaries in our investigation, were obtained by 
forced alignment using the acoustic models from Section 3. 
Kaldi pitch features were extracted over the duration of tones 
[16], which include frame-wise normalized pitch, probability 
of voicing, and delta-log-pitch. We then applied DCT 
(Discrete Cosine Transform) to each of the feature contours 
within the tone boundaries. A fixed number of DCT 
coefficients were used for all tones to train GMMs, regardless 
of the duration of the tone. The duration of tone was used as a 
separate feature.  

The phonetic realization of a tone is greatly affected by 
its context, especially the preceding tone. Besides monotone 
GMMs, we also trained GMMs for ditones, i.e., the 
combination of two tones, such as T1+T2. For every ditone in 
the dataset, its pitch features were extracted over the duration 
of two tones, whereas its duration feature was the duration of 
the second tone. 

For monotone GMMs, we employed four DCT 
coefficients and 50 Gaussian mixtures; for ditone GMMs, we 
employed six DCT coefficients and 10 Gaussian mixtures.  

4.2. Training tone models 

The goodness of pronunciation score on tone was 
calculated using formula 2: 

 

GOP(t) = log p(o(t ) | t)
p(o(t ) | x)

x∈T
∑

 (2) 

where T is the set of all tone models, five in the monotone set, 
and 24 in the ditone set (excluding T0+T0, which is rare in the 
dataset). Different from formula (1), the denominator in 
formula (2) is the sum of the likelihoods of the acoustic 
segment O(t) corresponding to all models in the monotone or 
ditone set. 

For monotone models, to calculate the mean goodness of 
pronunciation score on a tone is straightforward. For ditone 
models, the second tone in a ditone was used as the base to 
calculate the mean scores. For example, the mean goodness of 
pronunciation score on Tone 2 for ditone models was the 
average of the scores from five ditones, T0+T2, T1+T2, 
T2+T2, T3+T2, and T4+T2 

4.3. Results 

Figure 2 and 3 show the correlations between the test 
speakers’ mean goodness of pronunciation scores and their 
proficiency scores, for tone models trained on DCT 
coefficients of Kaldi pitch features and trained on the duration 
of tone, respectively. The results of monotone and ditone 
models are compared. 

We can see from Figure 2 that ditone models significantly 
improved the correlation on Tone0, and Tone0 and Tone3 
have higher correlations than the other tones. From Figure 3 
we can see that when tone models were trained on the duration 
of tone only Tone0 has a significant correlation. There are 
20,795 Tone0s in the dataset, 15,919 (73.1%) of them are the 
word “的” (de0). Combining the result on the vowel /e/ 

discussed in Section 3, we can see that “的” (de0), the most 
frequent word in Mandarin Chinese, has an interesting position 
in automatic scoring of Mandarin proficiency: it is the worst 
when phone models are employed but the best when tone 
models are employed. 

Table 2 lists the correlations for monotone and ditone 
models trained on the combination of DCT coefficients of 
Kaldi pitch features and the duration of tone. Again, Tone0 
and Tone3 are better than the other tones. The best correlation 
is from Tone0 with ditone models.  

 

Table 2. Correlations between goodness of pronunciation and 
proficiency scores: on tone. 

 
 Tone0 Tone1 Tone2 Tone3 Tone4 
monotone  0.238 0.210 0.165 0.279 0.085 
ditone 0.364 0.212 0.182 0.269 0.184 
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Figure 2: Correlations between goodness of pronunciation and 
proficiency scores: tone models were trained using DCT 
coefficients of Kaldi pitch features 

 

 
Figure 3: Correlations between goodness of pronunciation and 
proficiency scores: tone models were trained using the 
duration of tone. 

5. Conclusions 
We investigated three phonetic factors that may affect 

automatic scoring of Mandarin proficiency – phoneme, phone 
boundary, and tone. Acoustic models of “standard” speakers 
were trained and used to compute goodness of pronunciation 
scores for test speakers. The correlations between the test 
speakers’ goodness of pronunciation scores and their 
proficiency scores on individual phonemes, phone boundaries, 
and tones were computed. Phone boundaries had the best 
correlations, of which within-syllable boundaries were better 
than cross-syllable boundaries. The retroflex consonants, /zh, 
ch, sh/, and the vowel following these consonants, /iii/, 
outperformed the other phonemes. With regard to the use of 
tones, ditone models significantly improved the correlation on 

Tone0, and Tone0 and Tone3 performed better than the other 
tones. These results suggest that phone boundary models and 
phoneme- and tone- dependent scoring algorithms should be 
employed in automatic assessment of Mandarin proficiency. 
We also found that the worst phoneme with respect to 
automatic scoring of Mandarin proficiency was /e/, which is 
the vowel in the most frequent word “的” (de0) in the 

language. However, the word “的” (de0) was the best when 
scored on tone models. This result suggests that it may be 
helpful to separate phoneme and tone scoring prior to the 
combination of individual scores to produce an overall 
proficiency score.  
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