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Abstract
Speech activity detection (SAD) is an important first step in
speech processing. Commonly used methods (e.g., frame-level
classification using gaussian mixture models (GMMs)) work
well under stationary noise conditions, but do not generalize
well to domains such as YouTube, where videos may exhibit
a diverse range of environmental conditions. One solution is
to augment the conventional cepstral features with additional,
hand-engineered features (e.g., spectral flux, spectral centroid,
multiband spectral entropies) which are robust to changes in en-
vironment and recording condition. An alternative approach,
explored here, is to learn robust features during the course of
training using an appropriate architecture such as deep neural
networks (DNNs). In this paper we demonstrate that a DNN
with input consisting of multiple frames of mel frequency cep-
stral coefficients (MFCCs) yields drastically lower frame-wise
error rates (19.6%) on YouTube videos compared to a conven-
tional GMM based system (40%).
Index Terms: speech activity detection, voice activity detec-
tion, segmentation, deep neural networks

1. Introduction
Speech Activity Detection (SAD), the process of identifying all
speech containing segments in an audio signal, is an impor-
tant first step for a number of speech processing applications.
Among other benefits, accurate SAD greatly speeds up man-
ual transcription [1] and reduces error rates and overall compu-
tation time for speech recognition [2] and speaker recognition
[3]. SAD may also aid human listeners by reducing the cogni-
tive overhead associated with monitoring for speech containing
regions in signals with low a priori probabilities of speech.

A number of techniques have been proposed for SAD, in-
cluding both unsupervised systems that threshold against the
value of some energy or voicing feature [4] and supervised
systems which train a classifier with features such as Mel-
frequency cepstral coefficients (MFCCs) or perceptual linear
prediction coefficients (PLPs) as input. Amongst systems in
the latter class, support vector machines [5]), gaussian mixture
models (GMMs) [6], and multi-layer perceptrons [6] have all
found success. Algorithms for structured prediction have also
found success, including both hidden markov models (HMMs)
[2] and conditional random fields (CRFs) [7].

In recordings where the ratio of speech to non-speech sig-
nals is reasonably high, or where the non-speech background
is relatively stable, such methods work quite well. Frame-wise
error rates of less than 10% (relative to human annotation) are
commonly reported [2, 7, 6]. However, for recordings with low
SNR and/or diverse kinds of non-speech background, the per-
formance of these techniques may be much lower. The audio
tracks of web video recordings, as a group, are challenging in

this way and reported error rates on such tasks have been much
higher than for their clean counterparts [8, 9].

One approach to SAD on this challenging domain, explored
by [9], utilizes hand-crafted sets of features purported to be ro-
bust to changes in environment and recording conditions. An
alternative approach, explored here, is to learn robust features
during the course of training using an appropriate architecture
such as deep neural networks (DNNs) [10].

2. Evaluation details
2.1. Training/test sets

We make use of 65 hours of web videos selected from the
HAVIC corpus [11], of which we retain 47 hours for train-
ing and 18 hours for test. Videos were manually annotated
for speech, music, noise, and singing segments by annotators
at the Linguistic Data Consortium using the XTrans tool [12]
and targeting a “quick rich transcription”. The music, noise,
and singing segmentatins were used to defined 4 (not mutually
exclusive) environments in which the speech/non-speech deci-
sion is made: music present, noise present, singing present, and
clean. The prevalence of these different environment types in
the corpus is depicted in Table 1.

Environment
Overall Music Noise Singing Clean

Train 46.78 21.86 16.23 9.71 11.34
Test 17.66 8.52 6.20 3.45 4.02

Table 1: Total amount of audio (hours) in corpus containing
each environment.

2.2. Evaluation metrics

We evaluate the frame-wise performance of the systems using
four error metrics:

1. Error rate (ER) The percentage of misclassified frames.

2. Miss rate (MR) The percentage of speech frames classi-
fied as non-speech.

3. False alarm rate (FAR) The percentage of non-speech
frames classified as speech.

4. Equal error rate (EER) The error rate at the point on the
Receiver Operating Characteristic (ROC) curve at which
MR and FAR are equal.

Note that no forgiveness collar [13] is used during the evalua-
tions.



3. GMM Baseline System
3.1. Features

We extract 13 MFCC features every 10 ms using a 25 ms analy-
sis window. These features are then normalized on a file-by-file
basis to have zero mean and identity covariance. The normal-
ized features, along with their first and second differences, are
concatenated to form a 39-dimentional feature vector for input
to the baseline GMM system.

3.2. Model

As our baseline we consider a GMM classifier with two classes:
speech and non-speech. Each class was modeled by a GMM
with 128 components and diagonal covariance matrix structure.
GMMs were initialized by performing one round of K-Means
clustering using the entire training set, then refined by running
20 iterations of the Expectation-Maximization (EM) algorithm.

3.3. Segmentation

We consider two segmentation schemes. The first makes frame-
wise speech/non-speech decisions by comparison of the log-
likelihood ratio (LLR) between speech and non-speech GMMs
to a threshold, as in [14]. Obviously, the performance of the
system is heavily dependent on the chosen threshold, with dif-
ferent values being optimal for different contexts. For ease of
reporting, we follow [6, 9] and choose the threshold so that false
alarm and miss rates are equal on the test set and report the cor-
responding EER.

In our second segmentation scheme, we produce frame-
wise decisions by Viterbi decoding of the GMM log-likelihoods
with a 2-state (speech/non-speech) HMM. The HMM state-
transition probabilities and state priors are set to the empirically
observed values in the training set.

3.4. Performance

In Table 2 we present overall EER of the 128-component GMM
baseline system along with EER within each environment type.
Additionally, as an exploration of the importance of the exact
number of components used in training the system, we compare
to systems with 64 and 512 components. While there is a ben-
efit in using more components, this seems to fall off above 128
mixture components with a 12.26% reduction in overall EER
going from 64 to 128 components, but < 0.01% reduction in
overall ERR going from 128 to 512 components. Across envi-
ronment types, EERs are highest for segments containing music
or singing and lowest for clean or noisy conditions.

Post-Viterbi decoding frame-wise ERs, MRs, and FARs for
the 128-component GMM baseline are presented in Table 3.
Here, we see that use of Viterbi decoding results in a 8.41%
(relative) reduction in overall frame-wise error rate. Overall and
within each environment individually, false alarms appear less
prevalent that misses.

Environment
#Components Overall Music Noise Singing Clean
64 45.56 45.71 46.19 49.65 42.02
128 39.97 43.64 38.91 47.55 33.87
512 39.94 43.81 38.52 47.86 32.64

Table 2: EER (%) in different environments for GMM baseline
system (128 components) and systems trained with 64 and 512
components.

Environment
Overall Music Noise Singing Clean

ER 36.61 37.64 34.29 40.0 37.43
FAR 31.06 35.33 25.25 38.27 24.57
MR 47.59 50.62 52.35 55.25 43.17

Table 3: ER, FAR, and MR (%) for 128 component GMM base-
line system after Viterbi decoding.

4. Deep Neural Network
4.1. Features

As with the GMM baseline system, we extract 13 MFCC fea-
tures every 10 ms using a 25 ms analysis window, which are
then normalized on a file-by-file basis to have zero mean and
identity covariance. At each frame we concatenate the 13 nor-
malized MFCCs extracted at that frame with those of the 40
immediately preceding and following frames (an 81 frame con-
text window), yielding a 1,053 component feature vector that
serves as the input to our deep neural network.

4.2. Model

We train a deep neural network [10] with the following architec-
ture: a 1,053 unit input layer, 3 hidden layers, each containing
512 Rectified Linear Units [15], and an output layer consisting
of two softmax units. The network was trained by backpropa-
gation for 50 epochs (an epoch consisting of 100,000 examples)
using mini-batch gradient descent with a mini-batch size of 50
and learning rate of 0.001. Training was accelerated by use of a
momentum of 0.9. No pretraining was performed1.

4.3. Segmentation

As with the GMM baseline system, we consider two segmen-
tation schemes. The first makes frame-wise speech/non-speech
decisions by thresholding on the posterior probability of speech
being present that is produced by the DNN. As before, we
choose this threshold so that false alarm and miss rates are equal
on the test set and report the corresponding EER.

In our second segmentation scheme we produce frame-
wise decisions by Viterbi decoding using a 2-state (speech/non-
speech) HMM whose state-transition probabilities and state pri-
ors are set at the observed values in the training set. As input
to the Viterbi decoder we use scaled speech/non-speech log-
likelihoods, produced by dividing the state posteriors (as es-
timated by the DNN) by the state priors (as estimated on the
training set) [16].

4.4. Performance

Frame-wise EERs (overall and for each environment seperately)
for the DNN SAD system are reported in Table 4. Relative to the
GMM baseline, we observe a 50.86% reduction in overall EER.
Similarly large reductions in ERR are observed for each envi-
ronment individually, though performance is noticeably worse
when singing is present (33.52%) compared to all other condi-
tions. The results of Viterbi decoding of the DNN outputs are
given in Table 5. As was observed with the GMM baseline,

1While it is typical practice to generatively pretrain a DNN using
stacked Restricted Boltzman Machines or Denoising Autoencoders, we
have found that for Speech Activity Detection, such pretraining has lit-
tle benefit when using Rectified Linear Units; at least, for the network
depths considered in this paper.



Environment
Overall Music Noise Singing Clean

19.64 23.36 22.14 33.52 19.82

Table 4: EER (%) in different environments for DNN system.

Viterbi decoding results in a marked decrease in overall frame-
wise error rate: 19.64% to 16.61% or a 15.43% reduction. Sim-
ilarly large improvements are seen for SAD in segments con-
taining music, noise, or singing but not, strikingly, under clean
conditions: in fact, post-Viterbi decoding ER under clean con-
ditions is nearly double that for environments containing music
and 19.08% higher than for noisy environments. We believe that
this is due to two factors: first, the system correctly recognized
as non-speech many fairly long pauses (up to 800 msec) that
the Gold Standard annotation treated as part of speech regions;
and second, speech segments were a relatively small proportion
of the overall training materials (24.23%), and so inclusion of
the prior probabilities tended to push marginal cases (of which
there are plenty) into the non-speech category.

Environment
Overall Music Noise Singing Clean

ER 16.61 11.45 18.83 14.58 23.27
FAR 6.68 5.40 6.73 9.08 12.50
MR 36.24 45.37 42.72 61.20 28.08

Table 5: ER, FAR, and MR (%) for the DNN system after
Viterbi decoding.

4.5. Why does the DNN system outperform the GMM base-
line?

Given the results achieved above with the DNN system, one
might ask where this impressive improvement in performance
is coming from. One possibility is that these performance gains
are entirely due to the additional information present in the ex-
tended context window features used by the DNN. Undoub-
tledy, some of the performance improvement is due to these ex-
tended context features, but it may also be the case that DNNs
are more powerful than diagonal covariance GMMs even when
the feature sets are identical. Ideally, then, we would compare
the performance of the two architectures using a fixed feature
set.

As diagonal covariance matrix GMMs are ill-suited to han-
dling highly correlated features, we were unable to directly
compare the systems using the full 81-frame context window
feature set of Section 4.1. Consequently, here we train a DNN
system as in Section 4.2, but using the same feature set used
in GMM training (the 13 normalized MFCC features with their
deltas and delta-deltas, as described in Section 3.1). As seen
in Tables 6 and 7, even when using the same features the DNN
based system outperforms the GMM baseline, suggesting that
the DNN has superior modeling ability to diagonal covariance
matrix GMMs.

Environment
Overall Music Noise Singing Clean

31.07 33.35 34.80 39.53 31.85

Table 6: EER (%) in different environments for DNN system
trained using GMM baseline features.

Environment
Overall Music Noise Singing Clean

ER 25.43 15.54 26.68 15.93 42.78
FAR 5.44 5.72 4.96 8.48 5.07
MR 64.95 70.54 69.56 79.04 59.61

Table 7: ER, FAR, and MR (%) after Viterbi decoding for the
DNN system trained using GMM baseline features.

4.6. Context window size

While the above suggests that some of the DNN based system’s
performance improvement is due to simply being more efficient
at modeling, it is also clear that the system is benefitting from
the additional information in the extended context window it
uses as input. A natural question that arises, then, is just how
large a context window is necessary for accurate SAD? Conse-
quently, we trained a series of DNN based SAD systems of the
same form as that presented in Section 4.2, but with different
context window lengths (nf, the number of frames in the con-
text, in {1, 11, 21, 32, 41, 51, 61, 71, 81}). In Figure 1 we plot
both EER and post-Viterbi decoding ER as a function of con-
text window length. There is a definite benefit to incorporating
longer context windows, though most of the improvement can
be achieved using a context of only 21 frames, as compared to
the full 81 frame context.

5. Discussion
Speech Activity Detection of web videos is difficult for hu-
man listeners as well as for machines. The sound tracks of
user-generated web videos sometimes involve indistinct speech
whose boundaries and even existence are uncertain; the distinc-
tion between speech and various sorts of non-speech human-
created sounds is often fuzzy; even in a stream of relatively
clear speech, there are uncertainties about how to treat pauses.
No estimates of inter-annotator agreement are available for the
HAVIC data, so we created our own estimate by selecting thirty
10-second segments at random from the HAVIC test data, and
annotating these ourselves for speech vs. non-speech. The re-
sult disagreed with the “gold standard” for the same segments
on 13.6% of all frames, suggesting that there is probably an
effective noise floor of 10-15% frame-wise overall ER in this
material, in the sense that independent human annotators will
disagree with one another at about that rate. In this context
the 16.61% frame-wise overall ER achieved by our best sys-
tem is certainly respectable. Moreover, it compares favorably to
19.6% reported for similar materials by [9], though obviously
differences in the make up of the test sets and annotation guide-
lines make direct comparison impossible.
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Figure 1: Frame-wise results for DNN sytems trained with differing context window sizes. Left: Equal error rates (%). Right: Error
rates (%) after Viterbi decoding.
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