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Abstract 
This study attempts to improve automatic phonetic 
segmentation within the HMM framework. Experiments were 
conducted to investigate the use of phone boundary models, 
the use of precise phonetic segmentation for training HMMs, 
and the difference between context-dependent and context-
independent phone models in terms of forced alignment 
performance. Results show that the combination of special 
one-state phone boundary models and monophone HMMs can 
significantly improve forced alignment accuracy. HMM-based 
forced alignment systems can also benefit from using precise 
phonetic segmentation for training HMMs. Context-dependent 
phone models are not better than context-independent models 
when combined with phone boundary models. The proposed 
system achieves 93.92% agreement (of phone boundaries) 
within 20 ms compared to manual segmentation on the TIMIT 
corpus. This is the best reported result on TIMIT to our 
knowledge. 

Index Terms: phonetic segmentation, phone boundary 
model, forced alignment, HMM 

1. Introduction 
In the last twenty years, many large speech corpora have been 
collected for speech technology development. The ability to 
use speech corpora for research in other fields, such as 
phonetics, sociolinguistics and psychology, depends on the 
availability of phonetic segmentation and transcriptions. 
Manual phonetic segmentation is time-consuming and 
expensive; it could take as long as 400 times real time [1] or 
30 seconds per phone [2]. Automatic phonetic segmentation is 
much needed. 

A widely used method for automatic phonetic 
segmentation is “forced alignment”. The task requires two 
inputs: recorded audio and phone or word transcriptions. If 
only word transcriptions are available, the transcribed words 
are mapped into a phone sequence in advance by using a 
pronouncing dictionary, or grapheme to phoneme rules. The 
most common approach for forced alignment is to build a 
Hidden Markov Model (HMM) based phonetic recognizer [3-
8]. In this approach, each phone is a HMM that has typically 
3-5 states. The speech signal is analyzed as a successive set of 
frames. The alignment of frames with phones is determined by 
finding the most likely sequence of hidden states (which are 
constrained by the known sequence of phones) given the 
observed data and the acoustic model represented by the 
HMMs. The reported performances of standard HMM-based 
forced alignment systems range from 80%-89% agreement (of 
all boundaries) within 20 ms compared to manual 
segmentation on the TIMIT corpus [6]. 

A main drawback of the HMM-based forced alignment for 
phonetic segmentation is that phone boundaries are not 
represented in the model. The boundaries are simply derived 
from the alignment of phone states with frames. This is 
different from the manual phonetic segmentation process, in 

which the acoustic landmarks at phone boundaries [9], e.g., an 
abrupt spectral change, are used to determine the location of a 
boundary. Many researchers have tried to overcome this 
drawback. One method is to take a two-stage scheme, where 
HMM-based forced alignment is followed by local boundary 
refinement. For example, [10] used energy changes in 
different frequency bands for boundary correction, [11] trained 
support vector machine (SVM) classifiers to differentiate 
boundaries from non-boundary positions, and [12, 13] 
employed neural network to refine phone boundaries. [14] 
described a non-HMM system for phone alignment based on 
discriminative learning. In their system a set of base functions 
were learned to measure the confidence for an alignment. [15] 
proposed several modifications to an HMM-based system, 
including the use of energy-based features and distinctive 
phonetic features, and the use of observation-dependent state 
transition probabilities. The proposed system of [15] achieved 
93.36% agreement within 20 ms compared to manual 
segmentation, which is the best known reported result on the 
TIMIT corpus. Human labelers have an average agreement of 
93% within 20 ms on various corpora, and an agreement of 
93.49% within 20ms on TIMIT [6, 15]. 

In this study, we investigate the use of phone boundary 
models for forced alignment within the HMM framework. The 
idea is to treat phones and phone boundaries as independent 
HMMs. A boundary is determined by the alignment of its own 
state with frames. Three related questions are also 
investigated: (i) whether to use context-independent 
(monophone) or context-dependent (triphone) phone models in 
terms of forced alignment performance; (ii) is it helpful to use 
precise phonetic segmentation for training HMMs? (iii) is it 
helpful to separate cross-word and within-word phone 
boundaries? In forced alignment, unlike in automatic speech 
recognition, monophone HMMs are more commonly used 
than triphone HMMs. [7] showed that monophone models 
outperform triphone models in forced alignment for medium 
tolerances (15-30 ms different from manual segmentation), 
while underperform for small (5-10 ms) and large tolerances 
(>35 ms). A possible reason is that a context-dependent HMM 
does not have information to discriminate between the target 
phone and its context; therefore part of other phones may be 
modeled by the HMM [4, 7]. In this case, phone boundary 
accuracy will be sacrificed although phone recognition 
accuracy may not. To force context-dependent HMMs not to 
model part of other phones, we can use the acoustic 
observations of individual phones, instead of entire utterances 
with transcribed phone sequences, as input for training 
HMMs. In HMM-based speech recognition manual phonetic 
segmentation is generally not used; forced alignment 
segmentation seems to be precise enough for training HMMs 
because HMM training is an averaging process that tends to 
smooth segmentation errors [7]. The goal of automatic 
phonetic segmentation is, however, different from that of 
speech recognition. It remains unknown whether the use of 
precise phonetic segmentation for training HMMs can improve 
the performance of forced alignment. Finally, many studies 
have demonstrated that there are acoustic cues (though not 



infallible) to word boundaries [16-18] and the cues are used 
for word segmentation by listeners [19-21]. We investigate in 
this study whether within-word and cross-word boundaries 
should be separated in phone boundary models used for forced 
alignment. 

In the following sections we first introduce the data set and 
the evaluation method in Section 2. In Section 3 we present 
experiments that address the questions posed above. Our 
proposed system is described in Section 4, followed by a 
discussion of future research in Section 5. 

2. Data and Evaluation 
The TIMIT corpus was used [22]. Excluding the “dialect 
calibration” sentences (SA sentences), 3,696 utterances from 
the training partition of the corpus were used for training and 
1,344 utterances from the test partition were used for testing. 
Following [15], the 61 TIMIT phonemes were mapped to 54 
phonemes (detailed description on page 357 of [15]). The 
syllabic phonemes /em/, /en/, /eng/, and /el/ were mapped to 
their non-syllabic counterparts /m/, /n/, /ng/, and /l/. The 
glottal closure symbol /q/ was removed. It was either merged 
with the neighboring voiced phonemes or replaced with a 
schwa /ax/ if surrounded by two unvoiced phonemes. Short 
pauses with duration less than 20 ms were also removed and 
merged with neighboring phonemes. The 54 phonemes are 
listed in Table 1. The boundaries between two pauses, 
including stop closures, were excluded from evaluation. There 
were 136,450 boundaries in the training set, and 49,248 
boundaries in the test set for evaluation.  
 
Table 1. The phoneme set (54 phonemes). 

Pauses and 
stop closures 

/pau/, /pcl/, /bcl/, /tcl/, /dcl/, /kcl/, /gcl/ 

Vowels /aa/, /ae/, /ah/, /ao/, /aw/, /ax/, /axh/, /axr/, 
/ay/, /eh/, /er/, /ey/, /ih/, /ix/, /iy/, /ow/, /oy/, 
/uh/, /uw/, /ux/ 

Glides /l/, /r/, /w/, /y/, /hh/, /hv/ 
Nasals /m/, /n/, /ng/, /nx/ 
Plosives /b/, /d/, /g/, /p/, /t/, /k/, /dx/, /jh/, /ch/ 
Fricatives /s/, /z/, /sh/, /zh/, /f/, /v/, /th/, /dh/ 

 
In our experiments, forced alignment boundaries were 

adjusted by two statistical correction procedures before 
evaluation, one for the boundaries between two phonemes of 
vowels or glides, and one for the other boundaries. The 
boundaries between vowel/glide phonemes are inherently 
subjective. The criteria for TIMIT boundary assignments 
stated that ([23]): “The boundary between many semivowels 
and their adjacent vowels is rather ill-defined in the waveform 
and spectrogram, because transitions are slow and continuous. 
It is not possible to define a single point in time that separates 
the vowel from the semivowel. In such case we decided to 
adopt a simple heuristic rule, in which one-third of the vocalic 
region is assigned to the semivowel”. To compensate for such 
arbitrariness, we built a linear model to correct the forced-
alignment boundaries between vowel/glide phonemes. The 
model predicts manual boundary positions from the forced 
alignment positions of the two phonemes (phoneme center 
positions), the identities of the boundaries (the phonemes 
preceding and following the boundary), and the forced 

alignment boundary positions. The model was trained on the 
training data and applied to the test data. For all other 
boundaries, the mean difference between manually labeled and 
forced alignment boundaries for every boundary identity was 
calculated using the training data, and the forced alignment 
boundaries in the test set were shifted by these boundary-
dependent time differences. This correction is to compensate 
for the systematic segmentation errors produced by HMMs. 

The accuracy of automatic segmentation is generally 
measured in terms of what percentage of the automatically 
labeled boundaries are within a given time threshold 
(tolerance) of the manually labeled boundaries. 20 ms has 
been most widely used as a tolerance for measuring phone 
segmentation quality. In the following experiments the 
agreement percentages for 10 to 50 ms tolerances are reported. 

3. Experiments 

3.1. Precise phone segmentation for training 

To utilize manual phone segmentation for training HMMs, we 
obtained the acoustic observations of individual phones by 
extracting frames within the phone boundaries from 
observations (features) of utterances. The observations of 
individual phones were then used for training. As a 
comparison, the observations of entire utterances and their 
phone transcriptions were also used for training (which is a 
common practice in speech recognition). Monophone HMM 
and GMM acoustic models, with the standard 39 PLP features 
extracted with 25ms Hamming window and 10ms frame rate 
[24], were trained using the HTK toolkit [25]. The number of 
states in the HMM models and the number of Gaussian 
mixtures were optimized for best alignment performance with 
20ms tolerance. Stops, stop closures, the vowel /axh/ 
(“devoiced schwa”), nasals, and liquids (/l/, /r/) are 1-state 
HMMs; the “true” diphthongs (/ay/, /aw/, /oy/) are 5-state 
HMMs; and the other phonemes are 3-state HMMs. Eight 
Gaussian mixtures were used. In testing, forced alignment was 
run over utterances given their phone transcriptions. The 
forced alignment boundaries were adjusted by applying the 
statistical correction procedures described in Section 2. The 
results, in terms of agreement between forced alignment and 
manually labeled boundaries, are listed in Table 2. 

Compared to the system trained on utterances, the system 
trained on individual phones increased forced alignment 
accuracy by 3.03% for 10ms tolerance (from 70.20% to 
73.23%), by 1.87% for 20ms tolerance (from 89.98% to 
91.85%), and by 0.13% for 50ms tolerance (from 98.92% to 
99.05%). The relative error reductions for 10ms, 20ms, and 
50ms tolerances are 10.2%, 18.7%, and 12.0% respectively. 
Clearly, using precise phonetic segmentation for training 
HMMs can significantly improve forced alignment quality. In 
the following experiments phone HMMs are trained on the 
observations of individual phones. 

Table 2. Agreement percentages for different tolerances (in 
ms), for systems using or not using manual segmentation for 
training monophone HMMs. 
 <10 <20 <30 <40 <50 
Segmentation not 
used for training 

70.20 89.98 95.74 97.88 98.92 

Segmentation used 
for training 

73.23 91.85 96.45 98.17 99.05 



3.2. Context dependent and independent models 

A within-word triphone model was used to compare with the 
context-independent monophone model. The triphone HMMs 
had the same number of states as their monophone 
counterparts. The triphone states were tied using decision 
trees, and the degree of state-tying was optimized for best 
alignment performance with 20ms tolerance. 792 tied states 
were used.  

The results of the triphone model with 1, 2, 4, and 8 
Gaussian mixtures are listed in Table 3, for comparison with 
the monophone model with 8 Gaussian mixtures. From the 
table we can see that, on one hand, the triphone model 
outperforms the monphone model for all tolerances. This 
result is different from [7], which found that monophone 
models outperform triphone models for medium tolerances 
(15-30ms). This may be due to the fact that in our experiment 
HMMs were trained on individual phones not utterances. On 
the other hand, however, the differences between the triphone 
and monophone models were relatively small. The absolute 
error reductions for 10ms, 20ms, and 50ms tolerances are 
1.86%, 0.52%, and 0.1% respectively; and the relative error 
reductions for these tolerances are 6.95%, 6.38%, and 10.5% 
respectively. The results in Table 3 also suggest that fewer 
Gaussian mixtures are beneficial for medium or small 
tolerances while more Gaussian mixtures are beneficial for 
large tolerances. This result is consistent with [7].  
 
Table 3. Agreement percentages for different tolerances (in 
ms), for systems using monophone HMMs with 8 Gaussian 
mixtures and using triphone HMMs with 1, 2, 4, and 8 
Gaussian mixtures. 
 <10 <20 <30 <40 <50 
Monophones 73.23 91.85 96.45 98.17 99.05 
Triphones (1GMM) 74.53 92.31 96.63 98.34 99.12 
Triphones (2GMM) 74.93 92.37 96.72 98.33 99.09 
Triphones (4GMM) 75.09 92.17 96.41 98.13 98.92 
Triphones (8GMM) 73.61 92.17 96.76 98.40 99.15 
 

3.3. Phone boundary models 

In addition to phone HMMs, phone boundary HMMs were 
also trained in this experiment. Three types of boundary 
HMMs were tried: a 3-state HMM, a 1-state HMM, and a 
special 1-state model. The first two are typical HMMs whereas 
the last one is not a true Markov chain. Figure 1 illustrates a 
typical 1-state HMM, in which the transition probabilities a01 
= 1 and  0 < a11, a12 < 1. The state can either repeat itself or 
exit from the model. In the special 1-state model for the 
boundaries, however, a01 = 1, a11 = 0 and a12 = 1. Therefore, a 
boundary can have one and only one state occurrence, i.e., 
aligned with only one frame. Because boundaries are not 
independent units and do not have time spans in TIMIT, we 
cannot use manually labeled individual boundaries for training 
boundary HMMs. To select the best phone boundary model 
for forced alignment, we trained boundary HMMs, together 
with monophone HMMs, on utterances. The results showed 
that the special 1-state model had the best alignment 
performance with 20ms tolerance. 

 

 
Figure 1: 1-state HMM. The one state HMM is a special 1-
state model for the boundaries when the transition 
probabilities a11 = 0 and a12 = 1. 
 

Using the special 1-state model, we rebuilt phone 
boundary models by using the frames extracted at the 
boundaries, one frame for each boundary. Within-word and 
cross-word boundaries were differentiated. The full set of 
boundary models contained 5,832 states, one state for each 
boundary type (54 phonemes on the left * 54 phonemes on the 
right * 2). The boundary states were tied using decision trees, 
and the degree of state-tying was optimized for best alignment 
performance with 20ms tolerance. 734 tied states were used. 
To combine with the boundary models for forced alignment, 
monophone and triphone models were also retrained by 
excluding boundary frames from phone boundaries. In testing, 
forced alignment was run over utterances given their phone 
transcriptions and the boundaries between phones. The forced 
alignment boundaries were adjusted by applying the same 
statistical correction procedures. 

The results of using phone boundary models are listed in 
Table 4. Compared to the system using monophone HMMs, 
the system using both monophone HMMs and boundary 
models increased forced alignment accuracy by 4.21% for 
10ms tolerance (from 73.23% to 77.44%), by 2.07% for 20ms 
tolerance (from 91.85% to 93.92%), and by 0.3% for 50ms 
tolerance (from 99.05% to 99.35%). The relative error 
reductions for 10ms, 20ms, and 50ms tolerances are 15.7%, 
25.4%, and 31.6% respectively. The system using both 
triphone HMMs and boundary models, compared to the 
system using triphone HMMs only, increased forced 
alignment accuracy by 3.16% for 10ms, 1.48% for 20ms, and 
0.28% for 50ms. The relative error reductions are 12.6%, 
19.4%, and 30.8%. We note that although triphone HMMs 
slightly outperform monophone HMMs for all tolerances 
(shown in Table 3), the combination of monophone HMMs 
and boundary models outperforms the combination of triphone 
HMMs and boundary models for 20-40 ms tolerances.  
 
Table 4. Agreement percentages for different tolerances (in 
ms), for systems using monophone HMMs, monophone HMMs 
and boundary models, triphone HMMs, and triphone HMMs 
and boundary models.  
 <10 <20 <30 <40 <50 
Monophones 73.23 91.85 96.45 98.17 99.05 
Monophones & Bo. 77.44 93.92 97.43 98.78 99.35 

Triphones 74.93 92.37 96.72 98.33 99.09 
Triphones & Bo. 78.09 93.85 97.37 98.72 99.37 
 

Finally, we built a new set of boundary models in which 
within- and cross- word boundaries were not differentiated. 
The results are listed in Table 5. The system differentiating 



within- and cross- word boundaries had slightly better 
performance except for the 10ms tolerance. However, the 
differences between the two systems are very small.  
 
Table 5. Agreement percentages for different tolerances (in 
ms), for systems differentiating and not differentiating within- 
and cross- word boundaries. 
 <10 <20 <30 <40 <50 
Word boundaries 
differentiated 

77.44 93.92 97.43 98.78 99.35 

Word boundaries 
not differentiated 

77.53 93.84 97.39 98.75 99.35 

 

4. The proposed system 
From the experiments above, we can conclude that the use of 
explicit phone boundary models within the HMM framework 
can significantly improve forced alignment accuracy. HMM-
based forced alignment systems can also benefit from using 
precise phonetic segmentation for training HMMs. Figure 2 
shows the two improvements, compared to the baseline system 
in which monophone HMMs were trained on utterances. 

 
Figure 2: The improvements over the baseline system by using 
precise phone segmentation for training HMMs and by using 
phone boundary models. 
 

The proposed system is summarized in Table 7. The 
system achieves 93.92% agreement within 20ms. It improves 
from the baseline system by 3.94%, and from the best reported 
result in the literature (93.36%) by 0.56%. The relative error 
reductions are 39% over the baseline system and 8% over the 
best reported result. 

The most frequent errors in the results of the proposed 
system are boundaries between vowel/glide phonemes, and 
sentence-final boundaries, especially when the last phone is a 
nasal. The boundaries in the test set that have 30 or more 
errors for 20ms tolerance are listed below: 
    /n/_/pau/: 55                /aa/_/r/:51                /ao/_/r/: 47  
    /pau/_/dh/: 45              /l/_/iy/: 43               /ao/_/l/: 39 
    /m/_/pau/: 37               /iy/_/pau/: 34         /eh/_/r/: 30 

Two authors of the paper, MYL and NR, manually labeled 
100 offset boundaries of sentence-final nasals that were 
randomly selected from the test set. The agreements within 20 
ms between the two authors, between the authors and TIMIT, 
and between the authors and the proposed system are all 
relatively low and at the same level, as shown in Table 6. This 
result suggests that more consistent phonetic segmentation 
strategies should be adopted for constructing a database that 
can be used to evaluate further improved automatic phonetic 
segmentation techniques.  

 
Table 6. Agreements within 20ms between two authors, TIMT 
and the proposed system on 100 offset boundaries of sentence-
final nasals. 
 MYL NR TIMIT System 
MYL - 51 47 46 
NR 51 - 50 57 
TIMIT 47 50 - 54 
System 46 57 54 - 
 
Table 7. The proposed system. 
Phone models: Monophone HMMs. 
1-state HMMs: /pcl/, /bcl/, /tcl/, /dcl/, /kcl/, /gcl/, /axh/, /l/, /r/; 
5-state HMMs: /ay/, /aw/, /oy/; 
3-state HMMs: all other phonemes; 
Trained on individual phones. 
Boundary models: Special 1-state model in which the 
transition probability for the state repeating itself is 0. 
Differentiating within- and cross- word boundaries; 
Boundary states tied to 734 states; 
Trained on boundary frames, one frame for each boundary.  
Statistical correction to forced alignment boundaries. 
Boundaries between vowel/glide phonemes are corrected by a 
linear model; 
Other boundaries are shifted by a boundary-dependent time 
difference; 
Both are trained on training data. 
 

5. Future research 
Unlike TIMIT, most large speech corpora don’t have phonetic 
transcriptions. It is a more challenging task for forced 
alignment when only word transcriptions are available. 
Natural speech is highly variable, simple word-to-phoneme 
mapping (either by using a pronouncing dictionary or 
grapheme to phoneme rules) may not always generate phone 
sequences that contain the correct pronunciation. Moreover, 
transcribing words in spontaneous speech is itself a difficult 
task. Disfluencies, for example, are often missed in the 
transcription process. Future research needs to address the 
issues of pronunciation variation (e.g., deletion, reduction, and 
insertion), disfluencies and imperfect transcription in 
automatic phonetic segmentation. 
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