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Abstract 
Autism Spectrum Disorder (ASD) is increasingly prevalent [1], 
but long waitlists hinder children’s access to expedient 
diagnosis and treatment. To begin addressing this problem, we 
developed an automated system to detect ASD using acoustic 
and text features drawn from short, unstructured conversations 
with naïve conversation partners (confederates). Seventy 
children (35 with ASD and 35 typically developing (TD)) 
discussed a range of generic topics (e.g., pets, family, hobbies, 
and sports) with confederates for approximately 5 minutes. A 
total of 624 features (352 acoustic + 272 text) were incorporated 
into a Gradient Boosting Model. To reduce dimensionality and 
avoid overfitting, we dropped insignificant features and applied 
feature reduction using Principal Component Analysis. Our 
final model was accurate substantially above chance levels. 
Predictive features were both acoustic-phonetic and lexical, 
from both participants and confederates. The goal of this project 
is to develop an automatic detection system for ASD that relies 
on very brief, generic, and natural conversations, which can 
eventually be used for ASD prescreening and triage in real-
world settings such as doctor’s offices and schools. 
Index Terms: clinical speech, machine learning, Autism 
Spectrum Disorder 

1. Introduction 
The earliest descriptions of autism spectrum disorder (ASD) 
include mention of atypical speech patterns [2], [3]. Linguistic 
production has been explored in ASD, but most prior research 
samples were either elicited in highly structured contexts (e.g., 
reading sentences or word lists; [4]) or drawn from semi-
structured clinical interviews with an autism expert (i.e., 
Autism Diagnostic Observation Schedule (ADOS) evaluations 
[5]; [6]). While valuable, these studies produce results that may 
not generalize to the everyday conversations that impact the 
lives of children on the autism spectrum. In this study, we 
address a gap in the literature by developing and testing 
machine learning classification approaches for characterizing 
children’s short natural interactions with a non-expert 
conversational partner. 

Numerous speech and language features distinguish 
children with ASD from TD children, including word choice 
and prosody. In recent years, researchers have begun to use 
those features for automatic classification using machine-

learning techniques. For example, [7] measured pitch features 
from ADOS interviews of 146 children, including mean and 
median F0 values and median absolute deviation from the 
median (MAD), and trained a Naïve Bayes classifier using 
leave-one-out cross validation. Results showed that this 
approach correctly classified samples from ASD and TD 
children approximately 74% of the time, suggesting that pitch 
features are useful for identifying ASD. Similarly, [8] examined 
“awkward” prosody in 43 children with ASD and 26 TD 
controls using semi-structured data drawn from a story retelling 
task. They measured speech rate and rhythm, voice quality, and 
other intonational features. Results revealed that the model 
trained on speech rate and rhythm features performed the best, 
correctly classifying children with ASD and TD approximately 
69% of the time. These results, while promising, were drawn 
from controlled samples that may not generalize to the real 
world.   

Prior research also suggests that speech and language 
features produced by conversational partners (e.g., 
psychologists during clinical assessments) can be used to 
predict an autism diagnosis. For example, [9] examined speech 
features produced by 28 children and psychologists during a 
semi-structured clinical interview (ADOS). Results revealed 
that differences in both conversational partners’ voices 
increased as ASD symptoms became more severe. Interestingly, 
psychologists’ speech features predicted children’s autism 
symptom severity better than child-based features. Concurrent 
evidence for the importance of interlocutor features comes from 
[10], who found that psychologists’ speech features better 
predicted children’s level of engagement in semi-structured 
dyadic interactions than children’s features.  

Taken together, the extant literature suggests that (1) child 
speech features can be used to classify ASD and (2) adding 
features from conversation partners can improve classification 
accuracy. However, while valuable, most previous studies used 
elicited speech samples or semi-structured clinical 
conversations, which are costly to collect and may not 
generalize to daily life. In this study, we address a gap in the 
literature by developing and testing machine learning 
classification approaches to children’s natural interactions with 
a naïve conversational partner. 

2. Objectives 
Our objectives are to (i) automatically extract speech and text 
features that are predictive of ASD or TD status, (ii) train and 
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evaluate a predictive model, experiment with the extracted 
features, and (iii) identify the most predictive speech and text 
features for classifying ASD.   

3. Methods 

3.1. Participants 

Seventy children with ASD (N=35, 13 females) or TD (N=35, 
11 females) completed a 5-minute “get-to-know-you” 
conversation with a novel young adult confederate (N=22, 19 
females). Diagnoses were confirmed (ASD group) or ruled out 
(TD group) using the Clinical Best Estimate process [11] 
informed by the Autism Diagnostic Observation Schedule – 
Second Edition (ADOS-2; [5]) and adhering to DSM-V criteria 
for ASD [12]. Groups were matched on Full Scale IQ estimates 
(Wechsler Abbreviated Scale of Intelligence – 2nd Edition; 
[13]), verbal and nonverbal IQ estimates, and sex ratio (Table 
1). Participant social and repetitive behavior symptoms were 
characterized using ADOS-2 Calibrated Severity Scores [14] 
and scores on the Social Communication Questionnaire (SCQ; 
[15]). All participants were native English speakers.  

Table 1: Demographic and clinical characteristics of 
the participants. Shaded rows indicate clinical 

measurements. 

 ASD  TDC Group difference 
No.  35  35   
Age (sd) 11.42 (2.51) 10.57 (2.82) t = 1.33, p = 0.19 
Sex 13 f., 12 m. 11 f., 14 m.  χ2 = 0.06, p = 0.8 
IQ 105.51 107.14 t = -0.53, p = 0.6 
  Verbal 104.97 105.83 t = -0.28, p = 0.78 
  Non-verbal  104.63 105.97 t = -0.42, p = 0.68 
ADOS-2 
overall 

6.57  1.23 t = 13.78, p < 0.001 

   Soc. aff. 6.83 1.71 t = 13.15, p < 0.001 
   RRB 6.54 1.57 t = 10.53, p < 0.001 
SCQ 
lifetime  

17.68 2.69 t = 10.99, p < 0.001 

 

3.2. Procedure 

This study was conducted at the Center for Autism Research 
(CAR) with approval from and oversight by the Institutional 
Review Board of the Children’s Hospital of Philadelphia 
(CHOP). Parents provided written informed consent for their 
minor children to participate, and children provided verbal 
assent. Language samples were drawn from a 5-minute 
unstructured conversation between children and a young adult 
confederate; conversational prompts were not provided to either 
speaker, they were simply instructed to “get to know each 
other”. Confederates were unaware of participants’ diagnostic 
status and were assigned to each participant based on 
availability. Conversations were audio/video recorded using a 
device (Biosensor) placed on a table between speakers. The 
Biosensor is equipped with two HD video cameras facing 
opposite directions, so that recordings of the participant and 
confederate were simultaneously captured as they sat facing 
each other during the conversation. Audio was recorded via 
four directional microphones embedded in the Biosensor. 

3.3. Processing and Annotation 

A team of reliable annotators produced time-aligned, verbatim, 
orthographic transcripts of audio recordings in XTrans [16]. 
Each recording was processed by two junior annotators and one 
senior annotator, all of whom were undergraduate students and 
native English speakers. Before becoming junior annotators for 
this cohort, each team member received at least 10 hours of 
training in Quick Transcription [17] modified for use with 
clinical interviews of participants with ASD. In addition, 
annotators achieved reliability (defined as > 90% in common 
with a Gold Standard transcript) on segmenting (marking 
speech start and stop times) and transcribing (writing down 
words and sounds produced, using the modified Quick 
Transcription specification) before beginning independent 
annotation. One reliable junior annotator segmented utterances 
into pause groups, while the second transcribed words produced 
by each speaker. A senior annotator with at least 6 months of 
annotation experience then thoroughly reviewed and corrected 
each file.  

3.4. Features 

3.4.1. Audio features 

We converted the audio recordings from .flac to .wav using sox. 
Audio feature extraction was modeled after [18] using the 
ComParE13 configuration file of openSMILE [19] with a 25 ms 
window size and a 10 ms step size. Forty-four low-level 
descriptors (LLD) were measured by the configuration file, 
including voicing probability, pitch, jitter (local), jitter (DDP), 
shimmer (local), Harmonic-to-Noise Ratio (HNR), Root-Mean-
Square energy (RMS), Mel Frequency Cepstral Coefficients 
(MFCC) from 1st to 14th, and zero crossing rate (ZCR). For 
each extracted feature, we also considered first-order 
differences, which are indicated by the suffix Δ (e.g., RMS-Δ). 
Frames containing overlapping speech and speech from the 
research assistants proctoring the conversation were removed, 
as were voiceless frames. Voiceless frames were defined as 
frames where the pitch value was 0 or voicing probability was 
more than 0.1 standard deviation below the mean for each 
speaker in each conversation. 
      We first z-normalized energy-related features, and after 
excluding voiceless frames, we normalized pitch values in Hz 
to semitones, using the 5th percentile of each speaker’s pitch 
range as a baseline (St = log2(f0/baseline)*12). Missing values 
were imputed using the SimpleImputer function in scikit-learn 
[20] in Python. 

Since we were interested in speaker-level features for ASD 
classification, for each conversation we processed the 
participant and confederate LLD features using four statistical 
functionals: mean, median, standard deviation, and interquartile 
range (IQR = 75th percentile – 25th percentile). The total number 
of acoustic features generated by openSMILE was 352 (= 44 
LLDs * 2 speakers * 4 functionals).  

3.4.2. Text features 

Text features were calculated using base R, qdap [21], 
Linguistic Inquiry and Word Count (LIWC) software [22], and 
a script written by one of the authors (ML) to measure word-
related features, such as the frequencies of total words per 
speakers, pronoun usages, the number of filler words (um and 
uh). There were six main feature groups: pause/overlap metrics, 
segment/turn metrics, speaking rate/word complexity metrics, 
LIWC categories, lexical entropy/diversity measures, and parts 
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of speech. Formality and polarity were also computed at the 
conversation level for each speaker, using all words produced 
by a given speaker, leading to a total of 272 linguistic features 
(136 x 2 speakers).   

3.5. Feature selection  

Given the limited number of children in our sample, training 
our classifier with 624 features (352 acoustic features + 272 text 
features) is likely to overfit, resulting in poor performance. To 
reduce dimensionality and promote effective learning, we first 
selected features significantly correlated with the diagnostic 
status of the training set (p < 0.025) using univariate Pearson 
correlation within each cross-validation fold. This process 
selected 24–39 features per fold, for a total of 60 features (Table 
3). 24–39 features for 70 samples are still likely to produce an 
overfitted model, so we further implemented Principal 
Component Analysis for feature reduction and used the first 10 
components for model training.  

Table 2: Features that were significantly correlated 
with diagnostic status in the training set and selected 

more than 50% of the time. The number in 
parentheses indicates how many times the feature was 

selected (out of 70 folds).   

Participant (17 features) 
Acoustic 
features: 

IQR & SD of voicing probability (70), Median 
of HNR-Δ (70), IQR of RMS-Δ (70), Median of 
6th and 7th MFCC-Δ (70), IQR of HNR (67), 
Mean of 3rd MFCC-Δ (61), Mean and Median of 
6th MFCC (55, 46), Median ZCR (44) 

Text 
features: 

Overlap percent (70), See-related words (70), 
Perception-related words (70), Relative words 
(66), Death-related words (61)  

Confederate (16 features) 
Acoustic 
features: 

Median, mean, IQR, SD of jitter DDP (70), 
Mean, SD, IQR of jitter local (70), Mean of jitter 
local-Δ (70), IQR of F0-Δ (70), Median of HNR-
Δ (70), SD and Mean of 1st MFCC-Δ (55), 
Median of jitter local (50), Mean and SD of F0 
(40) 

 
Other selected features not shown in Table 3 include lexical 

features, such as words indicating informality, achievement, 
and rewards, as well as acoustic features, such as the median 
and IQR of both speakers’ F0-Δ. Selected features were trained 
in a Gradient Boosting Classifier using scikit-learn in Python. 
We implemented leave-one-out cross validation to evaluate the 
generalizability of our model.  

4. Feature analysis 
Figure 1 illustrates some of the voice quality features that were 
selected in all CV folds (Table 3). For example, a linear 
regression model shows that the median HNR-Δ of ASD 
children is higher than TDC (t = 3.25, p = 0.002) and the same 
feature of confederates is higher when talking to ASD than to 
TDC (t = 2.72, p = 0.008; Fig. 1). 
       We also found several other features of ASD children that 
showed significantly lower values than TDC. For example, the 
standard deviation of participants’ voicing probability (t = 2.92, 
p = 0.004) and IQR of F0-Δ (t = 3.09, p = 0.003) were 
significantly lower in ASD than TDC. Also, we found that some 
voice features of confederates were lower when talking to ASD 

children than TDC, such as all functionals of jitter (e.g., median 
jitter: t = 2.7, p = 0.009).  

 

5. Human perception 
Before evaluating our model, we tested whether humans 

could identify speaker diagnosis based on brief natural 
conversations. We recruited two undergraduate students from 
the University of Pennsylvania to classify a subset of 12 
conversations, where six of the participants were children with 
ASD and six were TD participants individually matched on age, 
sex, and IQ. The students were not experts in linguistics or 
speech/language pathology, but had worked at the Center for 
Autism Research for approximately 6 months. They were asked 
to listen to conversations one time through (without watching 
the video), and then guess the child’s diagnostic category. In 
addition, we asked students to note the features that influenced 
their decision (per each conversation; Table 4). The comments 
in Table 4 indicate that a human’s perception of ASD is related 
to atypical intonation, long and frequent pauses, relatively brief 
responses, and also pragmatic aspects of the conversations, 
such as topicality, relevance, and appropriateness of content.  

Table 4: Factors influencing student decisions about 
diagnostic classification (only from correct answers). 

ASD 

• Atypical (flat-sounding) intonation 
• Frequent use of “I don’t know” 
• Long latency to respond 
• Brief responses 
• Irrelevant details 
• Many random pauses 
• No follow-up questions 
• Less reactions 
• Changes in topic 
• Not much verbalization 

 Figure 1: The median Harmonic-to-Noise Ratio-Δ 
feature by speaker. 

TDC 

• Relevant subject matter 
• Appropriate reactions 
• Typical intonation  
• Elaborate, timely responses 
• Many questions to the confederate  
• No abrupt changes in topic 
• Natural speech pause lengths 
• Few pauses 
• Good conversational flow 
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6. Classification results 
As shown in Table 5, our classifier correctly identified the 
diagnostic status of the children 75.71% of the time. For TD 
children, the classifier was correct 85.71% of the time (30 out 
of 35). For ASD children, accuracy fell to 65.71% (23 out of 
35). The classifier’s receiver operator characteristic (ROC) 
curve is displayed in Figure 2, which is, again, far above the 
chance level (AUC = 75.43%).   

 

Figure 2: Receiver Operator Characteristic Curve. 

Table 5: Classification report of the model (top) and 
human performance (bottom). Note that human and 
system performance are not measured identically. 

   Accuracy Precision Recall F1-score 
System: ASD 0.66 0.82 0.66 0.73 

TD 0.86 0.71 0.86 0.78 
Mean 0.76 0.76 0.76 0.76 

Human: ASD 0.67 0.73 0.89 0.80 
TD 1.00 1.00 0.80 0.89 
Mean 0.83 0.86 0.84 0.84 

 
Importantly, our model was similarly accurate for 

classifying ASD (66%) compared with human raters (67%). 
However, human raters outperformed our system in classifying 
TD children. The model’s F1-score was higher for TD than for 
ASD, meaning that it predicted TD children better than ASD 
overall. This seems to be because ASD patients have variable 
and heterogeneous symptoms rather than common, shared 
symptoms which makes predicting ASD harder than predicting 
TD children. The same trend was also found in human raters’ 
performance. Lastly, our model had a high precision for 
classifying ASD, suggesting that it predicted ASD in a 
relatively conservative way.  

We also experimented with different sets of features to 
investigate the most predictive features, including demographic 
information such as age and gender of the participants. 
However, adding age and gender to the model did not improve 
the performance and adding IQ-related measures rather 
worsened the performance. This seems to be because 
participants in our data were purposefully matched on age, 
gender, and IQ.   

7. Discussion and Conclusion 
This paper reports the results of an automatic classification 
system for ASD using features drawn from short natural 
conversations, where 35 ASD and 35 TD children discussed a 
range of general topics with a novel conversation partner. We 
extracted 624 acoustic and text features from children and their 
conversation partners, which were then reduced to 10 
dimensions by performing feature selection and retaining the 
top 10 principal components within each CV fold. Our final 
model correctly classified ASD and TD children 75.71% of the 
time. This performance is reasonable, given that conversational 
samples were only 5 minutes long and topics were generic 
compared to semi-structured clinical interviews designed to 
elicit ASD-like features (e.g., ADOS evaluations). Student 
ratings of a subset of samples revealed that classifying ASD 
using these short, natural conversations is not an easy task, 
showing only slightly higher accuracy (83.33%) than our 
current model. However, we believe that using short, natural 
conversations like ours to classify ASD is a valuable endeavor, 
given that data collection is relatively easy and cheap and 
results are generalizable; therefore, it could potentially be 
applied to prescreen ASD in community-based settings. 
However, it should be noted that this approach is not yet 
valuable as a method for diagnosing ASD, which still needs to 
be diagnosed by expert clinicians.   

Our classifier performed above chance, but the fact that 
student ratings were more accurate than our model suggests that 
humans attend to features that are not yet captured by our 
automated approach. For example, students noted topicality, 
relevance, appropriateness, and conversational flow as 
important factors influencing their diagnostic decisions. Our 
feature set indirectly measured these features (e.g., via LIWC 
categories) but did not comprehensively capture these 
dimensions on a turn-by-turn level. In future research, we plan 
to engineer features that more directly measure the semantic 
and pragmatic appropriateness of natural conversation samples. 
Also, we aim to increase the size of our dataset, with the goal 
of improving model performance and eventually applying this 
approach in real-world settings. Lastly, we note that longer 
conversations (e.g., 10 minutes instead of 5 minutes), and 
designated topics might improve model performance.  
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Student A correctly identified the correct diagnostic 
category for 11 out of 12 participants (accuracy: 91.7%), 
whereas Student B had 9 correct answers (accuracy: 75%). 
Student A incorrectly identified one ASD as TD (false 
negative), and Student B misidentified two TD as ASD (false 
positive) and one ASD as TD (false negative). Students both 
classified the same ASD participant as a TD child, suggesting 
that our data realistically represent the ASD population, 
wherein participant phenotype can be highly heterogeneous. 
The students’ mean accuracy was 83.33% (= 20/24 * 100).  
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