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ABSTRACT

A deep neural network (DNN) based classifier achieved
27.38% frame error rate (FER) and 15.62% segment error
rate (SER) in recognizing five tonal categories in Mandarin
Chinese broadcast news, based on 40 mel-frequency cep-
stral coefficients (MFCCs). The same architecture scored
substantially lower when trained and tested with F0 and am-
plitude parameters alone: 40.05% FER and 22.66% SER.
These results are substantially better than the best previously-
reported results on broadcast-news tone classification [1] and
are also better than a human listener achieved in categorizing
test stimuli created by amplitude- and frequency-modulating
complex tones to match the extracted F0 and amplitude pa-
rameters.

Index Terms— speech recognition, Mandarin, tone mod-
eling, deep neural networks

1. INTRODUCTION

As is well known, Mandarin Chinese has lexical tone, whereby
words can be differentiated from one another by changes
in fundamental frequency (F0) contour and perhaps other
prosodic features. The tonal possibilities in standard Man-
darin are conventionally numbered from one to four. In terms
of the International Phonetic Alphabet’s Chao Tone Letter
system [2], where tonal patterns are schematized in terms of
a sequence of points scaled from 1 (lowest) to 5 (highest), the
four basic lexical tones are represented as:

Tone number: 1 2 3 4
Description: high low-rising low-falling high-falling
Tone letter:

Ă
£ Ę£ Ą£ Ď£

(55) (35) (21) (51)

Mandarin also has a neutral or zero tone (also sometimes
called fifth tone) which is perhaps best considered to be lack
of lexically specified tone, with the F0 contour determined by
context [3, 4, 5].

In continuous speech, the F0 contours for the five tonal
categories are subject to many sorts of variation. In “third
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tone sandhi”, a closely-associated sequence of Tone3+Tone3
may become Tone2+Tone3. More generally, there is exten-
sive tonal coarticulation, so that e.g. between the (high F0)
end of Tone1 and the (low F0) start of the Tone2 pattern, a fall
will occur. In addition, overall pitch range will vary substan-
tially across speakers and a given speaker’s pitch range will
vary within and across phrases due to phrasal downtrends,
variable emphasis, topic-shift effects, and so on [6, 7, 8, 9,
10]. These sources of variation mean that the recognition of
tonal categories in continuous speech is not a trivial task.

Although many Chinese speech-recognition systems have
included tonal features in order to improve performance in the
integrated task of recognizing tonally-specified segments [11,
12, 13, 14], there are relatively few documented attempts to
evaluate the automated recognition of tonal categories alone
in continuous speech [15, 1, 16, 17]. [15] use decision trees
and a segmental representation based on the fitting of poly-
nomials to the F0 contour to achieve 27.8% SER for continu-
ous speech. For broadcast news, [1] achieve 23.8% SER us-
ing MLPs and contextual information. Most recently, [17]
achieved 21% SER, albeit for command-and-control utter-
ances, with the incorporation of biologically inspired audi-
tory features. All save [17] perform explicit pitch tracking,
though even [17] includes parameters that are probably an ex-
cellent proxy for F0 slope. Notably, we improve substantially
on these results with our system, despite the lack of explicit
F0 information

Given the well-documented advantages of deep neu-
ral network (DNN) algorithms on such tasks [18, 19], we
were not surprised to find that a DNN-based system per-
formed well, scoring better than previously reported results
on roughly comparable tasks. We were, however, intrigued to
see this level of performance in a system trained on a set of
acoustic parameters in which F0 is not explicitly represented
and to find that a system trained on explicit F0 contours had
substantially worse performance.

All of these results are subject to confirmation and elab-
oration, but they suggest some non-obvious ideas about ap-
proaches to modeling prosodic features in general.

2. DATA

Testing and training sets were constructed using the 1997
Mandarin Broadcast News Speech corpus [20]. We ex-



tracted all “utterances” (the between-pause units that are
time-stamped in the transcripts) from the corpus and manu-
ally excluded those containing background noise or music.
Utterances from speakers whose names were not tagged in
the corpus or from speakers with accented speech were also
excluded. In total 7,849 utterances from 20 speakers were
selected. From these we randomly selected 50 utterances
from each of six speakers to compose a test set, with the re-
maining 7,549 utterances reserved for training. The 300 test
utterances were manually labeled and segmented into initials
and finals by a native Mandarin speaker. Tones were marked
on the finals, including Tone1 through Tone4, and Tone0 for
the neutral tone. The total number of utterances, segments,
and hours of speech are detailed in Table 1.

Hours Utterances Segments TBUs
Train 6.05 7,549 196,330 96,697
Test 0.22 300 7,189 3,464

Table 1: Train/test set composition. TBU = tone-bearing unit,
defined as the syllable final.

3. TONE CLASSIFICATION WITH MFCCS

We propose attacking the problem of explicit tone classifica-
tion as follows:

1) Train a DNN to classify each frame of speech as one of
six classes: Tone0, Tone1, Tone2, Tone3, Tone4, No-
tone.

2) Compute “tonal features” for each segment, defined as
the mean of the outputs of the DNN over all frames
contained within that segment. These are similar to the
articulatory features of [16].

3) Use these “tonal features”, along with segment duration
and contextual features, to classify the tone-bearing
units (TBUs).

3.1. Feature extraction

Forty mel frequency cepstral coefficients (MFCCs) were ex-
tracted every ms using the following analysis parameters: i)
0.97 preemphasis factor; ii) 25 ms Hamming window; iii)
1024-point DFT; iv) 40 filter mel-scale filterbank1. Cepstral
mean-variance normalization was applied on a per-utterance
basis. Neither the fundamental frequency nor the overtone
series is transparently present in this representation.

1Our MFCCs may be reproduced using melfcc from [21] with the fol-
lowing parameter values: wintime=0.025, hoptime=0.001, nbands=40, num-
cep=40, lifterexp=-22, sumpower=0, minfreq=0, maxfreq=8000, dcttype=3.

3.2. Network training

We trained a DNN [22] to classify frames of the signal as
one of six targets: Tone0, Tone1, Tone2, Tone3, Tone4, or
No-tone. Input to the DNN consisted of an 840-dimensional
feature vector derived by concatenating the MFCCs for the
21 frames with offsets of -100 ms, -90 ms, ..., +90 ms, +100
ms relative to the center frame. Training targets were derived
by forced alignment of the HUB-4 training utterances using
an HMM-based forced aligner built on the training utterances
with the CALLHOME Mandarin Chinese Lexicon [23] and
HTK. The aligner employed explicit phone boundary mod-
els [24] and achieved 93.1% agreement within 20 ms com-
pared to manual segmentation on the test set. Additionally,
we checked 100 training utterances on the tone labels auto-
matically generated by the aligner. Among the 1,252 sylla-
bles in the 100 utterances, 15 syllables had a wrong tone, an
error rate of 1.2%.

The full network topology consisted of: i) an 840 unit
input layer; ii) 4 hidden layers, each consisting of 2000 recti-
fied linear units (ReLUs) [25]; iii) an output layer consisting
of 6 softmax units. The network was trained for 140 epochs
(each epoch consisting of 250,000 examples) using stochastic
gradient descent with a mini-batch size of 128, 20% dropout
[26] in the input layer, 40% dropout in the hidden layers, and
a cross-entropy objective. Learning rate was kept constant
within epochs and followed the schedule η(n) = η(0) 500

n+500 ,
where η(0) = 0.5, while momentum was kept constant at 0.5
throughout training. No L2 weight decay was used, but the
incoming weight vector at each hidden unit was constrained
to have a maximum L2-norm of 3.

3.3. Segment-level classification

We consider four approaches to tone classification. Firstly,
we consider a simple baseline which assigns each TBU to the
the tone with the highest posterior probability according to
the tonal features of that segment. We also consider three su-
pervised methods: logistic regression with L2 regularization,
support vector machines (SVMs) using a radial basis function
(RBF) kernel, and neural networks. Input features consist of
the tonal features of the segment, duration (in seconds) of the
segment (as determined by the forced alignment boundaries),
and tonal features and durations of the two immediately pre-
ceding and two immediately following segments. The latter
we add with the hope that the additional context may allow
for modeling of coarticulation effects.

Hyperparameters (regularization strength, gamma, stop-
ping criteria, etc.) for logistic regression and SVM training
were set via grid-search using 5-fold cross-validation on the
training set. The neural network contained a single hid-
den layer of 128 ReLUs and was trained for 100 epochs
(epoch=100,000 instances) using stochastic gradient descent
with minibatches of size 128, 50% dropout in the hidden
layer, a learning rate of 0.5, and momentum of 0.9. The in-



coming weight vector at each hidden unit was constrained to
have a maximum L2-norm of 2.

3.4. Results

As an initial evaluation of the quality of the representation
learned by the network, we consider its frame error rate
(FER), defined as the percentage of frames incorrectly classi-
fied. As seen in in Table 2, overall FER is quite good at only
16.36%, a 3.34% absolute and 16.95% relative reduction
from the previously best reported FER for broadcast news
[27].

However, a score that includes non-tonal regions is prob-
lematic, because silences and other unvoiced regions are rel-
atively easy to recognize in material of this kind (see Figure
1) and, therefore, a FER that includes such regions will de-
pend on the amount of silence that is included in the test set.
Our test set includes only the regions marked as parts of ut-
terances in the published corpus and while we include overall
FER for comparison with other results reported in this way,
we feel that it is more meaningful to exclude frames that do
not correspond to a tone bearing unit in the gold standard seg-
mentation. By this metric, our FER rises to 27.3%. Excluding
neutral tones, FER improves to 26.60%.

No-tone 0 1 2 3 4

Tone

No-tone

0

1

2

3

4

T
o
n
e

96.70 0.10 0.63 0.91 0.48 1.18

19.74 53.85 0.63 5.02 5.31 15.46

7.51 0.18 71.55 8.74 2.88 9.15

8.20 0.35 5.56 74.77 5.87 5.24

8.99 0.66 3.21 8.38 63.57 15.18

7.87 0.75 3.50 2.82 7.01 78.04

Fig. 1: Confusion matrix (%) for MFCC system.

Overall TBUs Tones 1−4
MFCC 16.36 27.38 26.60
F0 24.22 40.05 37.78

Table 2: Frame error rates (%) on test set: overall, for TBUs,
and for TBUs excluding Tone0.

Our primary metric, however, is segment error rate (SER),
defined as the percentage of TBUs incorrectly classified. Us-
ing the tonal features derived from this DNN, our baseline
system achieves an SER of 17.73%. Moving to a supervised

approach substantially improves matters, as is seen in Table
3. Adding increasing amounts of context also helps, with SER
lower across-the-board when the tonal features of surrounding
segments are included as inputs. Interestingly, this contextual
effect is seen even when only adding the immediately adja-
cent segments, which usually correspond to syllable initials.
Our best SER, achieved with the combination of a 2 segment
context and neural networks, is 15.62%, representing a 2.11%
absolute (11.9% relative) reduction from the baseline. These
numbers are the best reported in the literature outside the con-
text of lab speech. Even our baseline represents a 6.07% ab-
solute and 25.5% relative error reduction from [1], the best
result we can find for broadcast news.

Features Logistic SVM NN
tonal features and duration 16.98 16.98 16.57
+ 1 segment context 16.69 16.75 15.96
+ 2 segment context 16.31 16.43 15.62

Table 3: Segment error rates (%) for MFCC system under
different combinations of segment-level features and classi-
fier. The baseline achieves 17.73% SER.

4. TONE CLASSIFICATION WITH F0 AND
AMPLITUDE INFORMATION

The error rates reported in Section 3.4 were achieved with-
out the inclusion of explicit F0 information. Consequently,
we decided to train a second system including F0 to compare
results. For this system we utilize the same DNN topology
and training procedure, but replace MFCCs with F0. F0 was
computed using RAPT [28] as implemented in ESPS’s get f0
(parameters: wind dur=0.01, min f0=60, max f0=650) and
normalized to have mean 0 and variance 1 within voiced re-
gions on a per-utterance basis. As a measure of amplitude, we
also included log-energy, computed using a 25 ms Hamming
window and 1024-point DFT and normalized to mean 0 and
variance 1 on a per-utterance basis. Both F0 and log-energy
were extracted every ms and frames at offsets of -100 ms, -90
ms, ..., +90 ms, +100 ms concatenated as before, resulting in
a 42-dimensional input to the neural network.

4.1. Results

Both FER and SER are substantially worse with the F0-based
system compared to the MFCC system. Overall FER rises
from 16.36% to 24.22%, a nearly 50% increase, and FER on
frames corresponding to TBUs rises from 27.38% to 40.05%.
Similar performance degradation is seen in SER with the best
performing combination of features/classifier achieving only
22.66%, a 4.93% absolute increase over the MFCC baseline
and a 7.04% absolute (and 45.07% relative) increase over
the best performing combination of features/classifier using
MFCCs.



Features Logistic SVM NN
tonal features and duration 30.31 29.36 29.27
+ 1 segment context 29.04 26.56 24.83
+ 2 segment context 27.51 26.33 22.66

Table 4: Segment error rates (%) for F0 system under differ-
ent combinations of segment-level features and classifier. The
baseline achieves 31.64% SER.

4.2. Human performance

We were unable to find useful information on perception of
tone from F0 and amplitude alone in material of this kind, so
we performed a simple pilot experiment to get an initial es-
timate for human performance. Tests of this kind often use
low-pass filtered speech, but we found that even with a steep
low-pass cutoff at 300 Hz, listeners were often able to guess
what the original word sequence had been, so we used an ap-
proach based on synthesizing sounds from estimated F0 and
amplitude contours.

We produced F0 and amplitude estimates for our test utter-
ances using get f0 with min f0=60, max f0=350, wind dur=0.01,
and frame step=0.005. We then created synthetic stimuli con-
sisting of a fundamental and nine overtones at 1

F amplitudes,
modulated with amplitude and frequency contours matching
those extracted from the test utterances during voiced inter-
vals, with amplitude set to 0 in unvoiced regions. Compar-
ative listening verified that the resulting non-speech stimuli
generally seemed to express the same subjective melody as
the spoken originals, though in a few percent of cases there
were problems due to voicing or pitch tracking errors.

We randomly selected 15 utterances from each of the six
speakers in the test set, comprising 982 tones in all. One na-
tive speaker of Mandarin Chinese (the second author) cate-
gorized the tones in the re-synthesized versions of these 90
utterances. He used a waveform display with the syllabic seg-
mentation indicated, listening carefully to the individual syl-
lables, to the syllables in their immediate context, and to the
entire utterance.

Subsequent checking determined that 39 of the 982 sylla-
bles had re-synthesis problems (most often failure to detect
voicing), so we retained judgments for the remaining 943.
The overall score was 71.79% correct. For the five (gold
standard) tonal categories, the scores were T0: 22.22%; T1:
78.87%; T2: 75.33%; T3: 59.35%; T4: 77.68%. Without T0
(889 tones), the overall accuracy was 74.8%. (18 other tones
were incorrectly identified as T0, so in a 4-way forced choice
the results would have been slightly better.)

The overall confusion matrix is shown in Figure 2, with
the gold-standard tones in the rows, and the listener’s re-
sponses in the columns. To our surprise, the human score of
28.21% SER was substantially worse than our best MFCC
system score of 15.62% and was much closer, though still
worse, to our best F0-based system score of 22.66% SER.

0 1 2 3 4

Tone

0

1

2

3

4

T
o
n
e

12 18 5 5 14

0 153 19 5 17

0 25 171 21 10

5 9 15 73 21

13 28 16 20 268

Fig. 2: Confusion matrix for perceptual experiment.

The human performance does not seem to reflect problems
in the analysis or synthesis of the test stimuli. It may reflect
difficulties in assigning non-speech melodies to tonal classes,
though we would like to note the possibility that the lack of
tone-associated acoustic features other than F0 and amplitude
may also play an important role.

5. CONCLUSION

The results of these experiments raise many questions, some
of which are suggested by the following alternative ideas
about the reasons for our results:

(1) Perhaps the tone-classification information is purely in
the F0 and amplitude contours, but the DNN system
is getting this information more accurately from the
MFCC parameters than it can from the ESPS pitch
tracker. (In this context, it’s important to note that we
are retaining 40 MFCC spectral parameters, rather than
the usual 12.)

(2) Perhaps other tone-class-related (or pitch-range-related)
phonetic dimensions, such as voice quality, are provid-
ing additional information useful for tone classifica-
tion, which the DNN system is able to extract from the
MFCC parameters.

(3) Perhaps (in this test set) the tone classes are correlated
with segmental features (vowel quality, nasality, etc.),
which the DNN system is also able to extract from the
MFCC parameters, even without any supervision for
these features during the training phase.

If (1) or (2) are true even to some extent, then perhaps
other kinds of prosodic analysis should start from richer rep-
resentations of the speech signal.
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