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ABSTRACT 
 

Studies have demonstrated that articulatory information can model 
speech variability effectively and can potentially help to improve 
speech recognition performance. Most of the studies involving 
articulatory information have focused on effectively estimating 
them from speech, and few studies have actually used such 
features for speech recognition. Speech recognition studies using 
articulatory information have been mostly confined to digit or 
medium vocabulary speech recognition, and efforts to incorporate 
them into large vocabulary systems have been limited. We present 
a neural network model to estimate articulatory trajectories from 
speech signals where the model was trained using synthetic speech 
signals generated by Haskins Laboratories’ task-dynamic model of 
speech production. The trained model was applied to natural 
speech, and the estimated articulatory trajectories obtained from 
the models were used in conjunction with standard cepstral 
features to train acoustic models for large-vocabulary recognition 
systems. Two different large-vocabulary English datasets were 
used in the experiments reported here. Results indicate that 
employing articulatory information improves speech recognition 
performance not only under clean conditions but also under noisy 
background conditions. Perceptually motivated robust features 
were also explored in this study and the best performance was 
obtained when systems based on articulatory, standard cepstral and 
perceptually motivated feature were all combined. 

Index Terms— large vocabulary speech recognition, articulatory 
trajectories, vocal tract variables, artificial neural networks. 

 

1. INTRODUCTION 
 

Variability in spontaneous speech adversely affects current state-
of-the-art automatic speech recognition (ASR) systems. One major 
source of variability is coarticulation and reduction; coarticulation 
is the spreading of features from one segment to another [1]. It has 
been suggested [2] that variation in speech can be accounted for by 
incorporating speech production knowledge, which in turn may 
improve the performance of an ASR system. Several studies [3, 4, 
5] have demonstrated that articulatory information can improve the 
performance of an ASR system by systematically accounting for 
variability such as coarticulation. Studies [6, 7] have also shown 
that articulatory information can improve the noise robustness of 
ASR systems. 

In a typical ASR application, the only observable is the speech 
signal, and speech production knowledge (typically, articulatory 
information or their dynamic information) is not available. Hence, 
production information needs to be estimated from the speech 

signal. Early efforts [8, 9, 10] tried to decipher appropriate features 
that captured articulatory dynamics and/or events, which were also 
known as articulatory features (AFs). Schmidbauer [11] proposed 
an AF-based ASR system, using 19 AFs (describing the manner 
and place of articulation) to perform phone recognition of German 
speech and reporting an improvement of 4% over the Mel-
frequency cepstral coefficient (MFCC)–Hidden Markov Model 
(HMM) baseline. Deng et al. used 18 multi-valued AFs [12, 13] 
describing the place of articulation, horizontal - vertical tongue 
body movement, voicing information and reported a relative phone 
recognition improvement of 9% over the MFCC-HMM baseline on 
the TIMIT dataset. A comprehensive literature survey on the use of 
AFs and production motivated ASR systems was presented in [14]. 

Articulatory trajectory information is more challenging to use 
than AFs as it involves retrieving articulatory dynamics from the 
speech signal, which is traditionally called ‘speech inversion’. 
Inversion studies involving articulatory trajectories have been 
mostly confined to predicting such dynamics efficiently and 
accurately, and understanding their functional relationship with the 
acoustics. Due to the difficulty in estimating them, only a few ASR 
studies [4, 6, 15] have used such articulatory dynamics. Frankel et 
al.[4] developed a recognition system that uses a combination of 
acoustic and articulatory information as input, with the articulatory 
trajectories modeled using phone-specific linear dynamic models. 
They showed that using articulatory data from direct measurements 
in addition to MFCCs resulted in a performance improvement of 
9% [15] over the system using only MFCCs. Such an improvement 
did not hold when the articulatory data was estimated from the 
acoustic signal [15]. A recent study [6] of digit recognition on the 
Aurora-2 dataset has shown that articulatory trajectories can help 
to improve the noise robustness of an ASR system.  

In this paper we train an artificial neural network (ANN) to 
estimate articulatory trajectories from a speech signal. We then use 
it to generate trajectories that are used as features for training and 
testing English large-vocabulary continuous speech recognition 
(LVCSR) systems. Our results indicate that use of articulatory 
information in addition to standard cepstral features provides 
sufficient complementary information that helps to reduce the 
word error rates (WERs) in both clean and noisy conditions.  

 

2. DATASETS 
 

To train a model for estimating vocal tract constriction variable 
trajectories (a.k.a TVs) from speech, we require a speech database 
containing ground-truth TVs. Unfortunately; no such database is 
exist at present. For this reason, Haskins Laboratories’ Task 



Dynamic model (popularly known as TADA [16]) along with 
HLsyn [17] was used in our work to generate a database that 
contains synthetic speech along with articulatory specifications. 
From text input, TADA generates vocal tract constriction variables 
and other parameters, some of which are used by HLsyn to create 
the corresponding synthetic speech. TVs (refer to [6, 7] for more 
details) are continuous time functions that specify the shape of the 
vocal tract in terms of constriction degree and location of the 
constrictors. TADA defines eight TVs altogether as shown in 
Table 1, and their positional information is pictorially represented 
in Fig. 1. Refer to [18-20] for more explanation about the TVs.. 
 

Table 1. Constriction organ, vocal tract variables, their unit of 
measurement and dynamic range 

Constriction 
organ 

Vocal tract variables  Unit Dynamic range 
Max Min 

Lip Lip Aperture (LA) mm 27.00 -4.00 
Lip Protrusion (LP) mm 12.00 8.08 

Tongue Tip 
 

Tongue tip constriction 
degree (TTCD) 

mm 31.07 -4.00 

Tongue tip constriction 
location (TTCL) 

degree 80.00 0.00 

Tongue Body Tongue body 
constriction degree 

(TBCD) 

mm 12.50 -2.00 

Tongue body 
constriction location 

(TBCL) 

degree 180.00 87.00 

Velum Velum (VEL) - 0.20 -0.20 
Glottis Glottis (GLO) - 0.74 0.00 

 

 
Fig. 1. Eight tract variables from five distinct constriction locations 

 

From the CMU dictionary [30] 111,929 words were selected and 
their Arpabet pronunciations were input to TADA, which 
generated their corresponding TVs (refer to Table 1) and synthetic 
speech. 80% of the data was used as the training set, 10% was used 
as the development set, and the remaining 10% was used as the test 
set. Note that TADA generated speech signals at a sampling rate of 
8 kHz and TVs at a sampling rate of 200 Hz.  

For LVCSR experiments we used two datasets – (1) Aurora-4  
[21] and (2) 400 hours Fisher subset (fsh2004sub) [22] with NIST 
RT-04 Conversational Telephone Speech development set as the 
test set (denoted dev2004).  

Aurora-4 contains six additive noise versions with channel 
matched and mismatched conditions. It is created from the 
standard 5K Wall Street Journal (WSJ0) database and has 7180 
training utterances of approximately 15 hours duration and 330 test 
utterances. The acoustic data (both training and test sets) comes 
with two different sampling rates (8 kHz and 16 kHz). In Aurora-4, 
two training conditions were specified: (1) clean training, which is 
the full SI-84 WSJ training set without added noise; and (2) multi-
condition training, with about half of the training data recorded 

using one microphone, and the other half recorded using a different 
microphone, with different types of added noise at different signal-
to-noise ratios (SNRs). The noise types are similar to the noisy 
conditions in the test set. The Aurora-4 test data includes 14 test 
sets from two different channel conditions and six different added 
noises (in addition to the clean condition). The SNR was randomly 
selected between 0 and 15 dB for different utterances. The six 
noise types used were (1) car, (2) babble, (3) restaurant, (4) street, 
(5) airport and (6) train-station. The evaluation set comprised 5K 
words under two different channel conditions. The original audio 
data for test conditions 1-7 was recorded with a Sennheiser 
microphone, while test conditions 8-14 were recorded using a 
second microphone that was randomly selected from a set of 18 
different microphones (more details in [21]). The different noise 
types were digitally added to the clean audio data to simulate noisy 
conditions. 

The 400 hour Fisher corpus (a.k.a. fsh2004sub) [22] is a subset 
of the LDC Fisher data and contains conversational English speech 
and a balance of speaker gender, conversational topics, and phone 
line conditions. For acoustic models trained with fsh2004sub, the 
test set was the NIST RT-04 Conversational Telephone Speech 
development set (a.k.a. dev2004). No noise is intentionally added 
to any of the files in these datasets. 
 

3. TV ESTIMATOR 
 

ANNs have been used [6, 23] for estimating TV trajectories from 
the speech signal. Once trained, ANNs require low computational 
resources compared to other methods in terms of both memory 
requirements and execution speed [23]. ANN has the advantage 
that it can have M inputs and N outputs; hence, a complex mapping 
of M vectors into N different functions can be achieved. In such 
architecture, the same hidden layers are shared by all N outputs, 
endowing the ANN with the implicit capability to exploit any 
correlation that the N outputs may have amongst themselves. The 
feed-forward ANNs were trained with back propagation using a 
scaled conjugate gradient (SCG) algorithm. For TV estimation, the 
speech signal was parameterized as Normalized Modulation 
Cepstral Coefficients (NMCCs) [24], where 13 cepstral 
coefficients were extracted at the rate of 100 Hz with an analysis 
window of 20 ms. The TVs were downsampled to 100 Hz to 
temporally synchronize with the NMCCs. The NMCCs and TVs 
were Z-normalized and scaled to fit their dynamic ranges into [-
0.97, +0.97]. It was observed [23] that incorporating dynamic 
information helps to improve the speech-inversion performance, 
for which the input features were contextualized by concatenating 
every other feature frame within a 200 ms window. Dimensionality 
reduction was performed on each feature dimension by using 
discrete cosine transform (DCT) and retaining 70% of the 
coefficients, resulting in a feature of dimension 104. Hence, for the 
TV estimator M was 104 and N was 8 for the eight TV trajectories. 
 

4. ACOUSTIC MODEL 
 

The details of all algorithms used for building the recognition 
systems in this work were described in [25]. The Aurora-4 system 
uses a bigram language model (LM) on the initial pass and uses 
second-pass decoding with model space maximum likelihood 
linear regression (MLLR) speaker adaptation followed by trigram 
LM rescoring of the lattices from the second pass. We trained four 
sub-systems: (1) MFCC system: using SRI’s Decipher front end 
MFCC features, (2) RASTA-PLP system: using perceptual linear 
prediction with RASTA-filtering, (3) NMCC system: using 
perceptually motivated NMCC acoustic features [24], and (4) 



MFCC+ModTV_pca30 system: using MFCC features combined 
with the temporal modulation information of the estimated TVs, 
which were then reduced to 30 dimensions (D) using principal 
component analysis (PCA). Our initial experiments revealed that 
using temporally contextualized TVs as features provided better 
ASR performance than using the instantaneous TVs, indicating 
that the dynamic information of the TVs contributes to improving 
ASR performance. A context of 13 frames i.e., ~120 ms of 
temporal information was used to contextualize the TVs. To reduce 
the dimension of the contextualized TVs, DCT was performed on 
each of the eight TV dimensions and their first seven coefficients 
were retained, resulting in a 56D feature. We name this feature the 
modulation of TVs (ModTVs), which were concatenated with 52D 
MFCCs (in all experiments the standard cepstral features contained 
13 cepstral coefficients along with velocity, acceleration, and jerk 
information). The resulting 108D feature set was PCA transformed 
to a 30D feature set, as we observed that more than 90% of the 
information resided in the Eigenvector space of the first 30 
Eigenvalues.  

For the fsh2004sub system, the LMs were pre-trained and 
include bigrams (for lattice generation) and higher-order LMs (for 
lattice and N-best rescoring). For training the LMs, the CTS in-
domain transcripts are augmented with data harvested from the 
web, using a search engine to select data that is matched for both 
style and content. As with the Aurora-4 experiments, we built 
multiple subsystems using different front-end features: (1) MFCC, 
(2) RASTA-PLP, (3) NMCC and (4) MFCC+ModTV_pca30, 
where the baseline system used 52D MFCC features. 

The features were normalized using standard cepstral mean and 
variance normalization on the Fisher speaker clusters (conversation 
sides). For MFCC and RASTA-PLP features, we conducted vocal 
tract length normalization (VTLN). For MFCC, RASTA-PLP and 
NMCC heteroscedastic linear discriminant analysis (HLDA) was 
used to reduce the 52D features to 39D. HLDA was not used for 
MFCC+ModTV_pca30. For all front-end features, we trained 
maximum likelihood estimate (MLE) cross-word HMM-based 
acoustic models with decision-tree clustered states. 

When decoding the testsets, the cross-word MLE model was 
first adapted through MLLR using a phone-loop model as 
reference and then used for 1-best decoding. The cross-word MLE 
model was adapted again through MLLR on the 1-best decoding 
output and the adapted model and the bigram LM were used for 
generating HTK lattices. Speaker-clustered regression class trees 
were used to improve robustness of MLLR adaptation [26]. We 
then dumped 2000-best N-best lists from the HTK lattices and 
rescored with the 4-gram LM. The final output is the result of an 
M-way combination of the subsystems based on different front end  
features, using N-best ROVER [27] implemented in SRILM [28].  
 

5. RESULTS 
 

For the TV estimator, a single hidden layered feed-forward ANN 
with tan-sigmoid activation was used and it was observed that a 
network with 150 neurons with biases provided reliable results. 
Performance of the TV estimator was measured using Pearson’s 
product-moment correlation (PPMC) coefficient (rPPMC) between 
the actual or ground-truth and the estimated articulatory 
trajectories. Table 2 gives the   on the test set of the TADA 
synthesized corpus. Note that the ANN based TV-estimator was 
trained and tested on the synthetic dataset created using TADA. 
Previous studies [23] on TV estimation have reported average 

 values of ~0.94 using a smaller corpus of lesser than 500 
words. The corpus used in this paper is more than 200 times larger 

than what was used in [23], and ~0.93 suggests that the TV 
estimator is performing similar to the systems presented elsewhere. 
The TV estimator was then deployed on the natural speech of 
Aurora-4, fsh2004sub and dev2004, and the estimated TVs 
obtained were used in the ASR experiments reported below. 
 

Table 2.   for each TV obtained from the ANN 
GLO VEL LA LP TTCD TTCL TBCD TBCL
0.938 0.948 0.897 0.908 0.919 0.921 0.920 0.955 

 

For the Aurora-4 LVCSR experiments we used only mismatched 
conditions (i.e., train with clean data [clean training] and test on 
data from different noisy background and the same or different 
channels) at 8 kHz. We explored four different feature sets: (1) 
MFCCs; (2) RASTA-PLP from SRI International’s DECIPHER® 
front end; (3) NMCC; and (4) MFCC+ModTV_pca30. Tables 3 
and 4 show WERs for the 8 kHz clean training condition. Note that 
we have also explored fusing ModTVs with RASTA-PLP and 
NMCCs, but such fusion didn’t to provide any gain. Table 3 
represents the result from matched channel conditions, with the 
training and test files representing identical channel conditions. 
Table 4 represents mismatched channel conditions, in which test 
files represent a different channel condition than the training files. 
Results in both Table 3 and 4 are from using a bigram LM in 
decoding. Tables 5 and 6 present N-best ROVER results after 
rescoring N-best lists from each of the four different subsystems 
with a trigram LM. Tables 7 and 8 present the M-way ROVER 
combination of trigram rescored n-best lists for the above four 
systems. As observed from the tables below, trigram rescoring and 
N-best ROVER helped to reduce the WERs significantly compared 
to the original bigram decoding. An M-way ROVER combination 
further improved the performance, by utilizing complementary 
information amongst the different systems. ROVER [29] combines 
1-best outputs from multiple ASR systems to produce a composite 
output having lower WER. In the matched-channel condition, M-
way n-best ROVER combination reduces the average WER from 
35.2% in the baseline MFCC system to 26.1%. 

 

Table 3. Bigram decoding WER (%) for clean training conditions (with 
testing channel the same as the training data) at 8 kHz 

 MFCC RASTA-PLP NMCC MFCC+ModTV-
pca30

1 Clean 14.6 14.2 16.1 14.8
2 Car 20.0 22.2 21.0 22.8
3 Babble 43.6 47.1 37.5 40.3
4 Restaurant 46.4 46.0 41.7 42.6
5 Street 51.0 52.7 40.2 42.1
6 Airport 38.4 38.8 36.8 36.1
7 Train station 50.7 53.1 41.6 46.8

Average(2-7) 41.7 43.3 36.5 38.3
 

Table 4. Bigram decoding WER (%) for clean training conditions (with 
testing channel different from the training data) at 8 kHz 

MFCC RASTA-PLP NMCC MFCC+ModTV-
pca30

1 Clean 17.9 20.5 19.5 18.6
2 Car 25.0 30.1 25.3 27.3
3 Babble 49.5 54.5 42.4 49.7
4 Restaurant 53.3 56.9 48.6 53.2
5 Street 57.5 63.0 48.0 57.3
6 Airport 43.3 47.7 42.9 45.5
7 Train station 54.9 59.0 46.7 56.9

Average(2-7) 47.3 51.9 42.3 48.3
 

Under mismatched-channel condition, the reduction on WER is 
from the baseline 41.3% to 31.9% (here adding RASTA-PLP to 3-
way combination slightly hurts the performance). For the acoustic 
models trained with fsh2004sub data and tested with dev2004 data, 



the original system using bigram LM for decoding and the N-best 
ROVER performance after rescoring N-best list with the 4-gram 
LM is shown in Table 9. Note that in Table 9, the MFCC and 
RASTA-PLP systems both had 
 

Table 5. N-best ROVER WER (%) (after trigram LM rescoring) 
for clean training conditions (with identical training and testing 

channels ) 

MFCC RASTA-PLP NMCC MFCC+ModTV-
pca30

1 Clean 9.8 9.4 11.3 9.8
2 Car 13.8 15.7 14.3 14.6
3 Babble 36.7 39.9 30.9 32.8
4 Restaurant 40.6 39.3 35.3 36.2
5 Street 44.5 46.6 34.1 35.3
6 Airport 30.8 31.4 30.0 29.7
7 Train station 44.5 47.5 34.7 39.7
 Average(2-7) 35.2 36.7 29.9 31.4
 

Table 6. N-best ROVER WER (%) (after trigram LM rescoring) 
for clean training conditions (with identical training and testing 

channels) 

MFCC RASTA-PLP NMCC MFCC+ModTV-
pca30

1 Clean 12.3 14.6 13.8 12.7
2 Car 17.7 22.9 18.0 18.4
3 Babble 43.0 48.8 35.9 37.9
4 Restaurant 47.5 51.5 42.3 41.9
5 Street 53.1 58.0 42.0 45.5
6 Airport 36.4 41.0 36.7 34.8
7 Train station 49.9 53.6 40.3 44.1
 Average(2-7) 41.3 46.0 35.9 37.1

 

Table 7. M-way ROVER combination (after trigram LM rescoring) 
for clean training conditions (with different training and testing 

channels) 
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1 Clean 8.4 8.6 8.1 7.8
2 Car 12.8 12.5 11.3 11.1
3 Babble 34.8 31.5 27.5 27.6
4 Restaurant 36.0 34.0 29.7 29.9
5 Street 42.1 35.5 30.6 30.7
6 Airport 27.6 26.9 24.5 23.8
7 Train station 42.4 38.3 33.4 33.7
 Average(2-7) 32.6 29.8 26.2 26.1
 

Table 8. M-way ROVER combination (after trigram LM rescoring) 
for clean training conditions (with different training and testing 

channels) 
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1 Clean 11.7 10.9 10.6 10.1
2 Car 17.6 16.3 15.0 15.0
3 Babble 42.5 36.8 32.2 33.5
4 Restaurant 46.2 40.8 37.2 37.3
5 Street 51.6 45.3 39.0 40.0
6 Airport 35.7 32.4 29.5 29.2
7 Train station 48.8 43.2 38.2 38.6
 Average(2-7) 40.4 35.8 31.9 32.3

 

VTLN performed on the acoustic features, whereas no VTLN was 
performed on the MFCCs of the MFCC+ModTV-pca30 systems as 
similar transformation cannot be applied on the ModTVs. We 
observed that with VTLN an absolute 3% reduction in WER is 
seen for the MFCCs relative to not using VTLN 
[MFCC(woVTLN)]. Adding the ModTVs to MFCCs reduced the 
WER by 2% absolute (from 32.5 to 30.5) in the N-best ROVER 
systems. M-way ROVER combination was performed on the 4-
gram LM rescored n-best lists for the system shown above, and the 
results are given in Table 10. 

Table 10 shows that the M-way ROVER combination between 
[MFCC]-[MFCC+ModTV-pca30] systems demonstrated lower 
WER compared to [MFCC]-[RASTAPLP] systems indicating that 
articulatory features are bringing in more complementary 
information than the RASTAPLP system. The combination of the 
perceptually motivated NMCC features further reduced the WER 
by 1% absolute and finally the best number was obtained by 
combining all the systems together, with a final WER of 26.6%, 
resulting in an absolute 2.6% reduction in WER compared to the 
N-best ROVER result of 29.2% from the MFCC-baseline.  

 

Table 9. Original system and the N-best ROVER (after 4-gram LM 
rescoring) WER for systems trained with fsh2004sub and tested on 

dev2004 
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s y
st

em
s Original system

N-best 
ROVER

MFCC 29.9 29.2
RASTA-PLP 32.0 31.3

NMCC 33.7 33.0
MFCC+ModTV-pca30 33.5 30.5

MFCC(woVTLN) 33.2 32.5
 

Table 10. WER from M-way ROVER (after  4-gram LM 
rescoring)  combination of different systems trained with 

fsh2004sub and tested on dev2004 
M-way 
ROVER

[MFCC]-[RASTA-PLP] 28.7
[MFCC]-[MFCC+ModTV-pca30] 28.3

[MFCC]- [MFCC+ModTV-pca30]-[NMCC] 27.2
[MFCC]-[MFCC+ModTV-pca30]-[NMCC]-

[RASTA-PLP] 26.6
 

 

6. CONCLUSION 
 

We have presented LVCSR experiments using articulatory 
features, and compared the performance with a standard MFCC 
baseline, a RASTAPLP system, and perceptually motivated 
NMCC features. It was observed that the articulatory features 
always helped to improve performance over the MFCC baseline 
and the M-way N-best ROVER combination of all the systems 
demonstrated the best WER. The uniqueness of the study described 
in this paper lies in the fact we presented three broad class LVCSR 
front ends (standard cepstral based, speech perception based, and 
articulatory information based systems) and showed that they 
capture complementary information and can significantly improve 
ASR performance when fused together. Performance of the TV 
estimator discussed in this paper can be further improved by 
incorporating sophisticated modeling techniques (such as deep 
learning), which in turn can improve performance of the 
articulatory feature based LVCSR system, a future direction for 
research in this area.  
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