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Abstract 

We describe an approach to two areas of 
biomedical information extraction, drug devel-
opment and cancer genomics. We have devel-
oped a framework which includes corpus anno-
tation integrated at multiple levels: a Treebank 
containing syntactic structure, a Propbank con-
taining predicate-argument structure, and an-
notation of entities and relations among the en-
tities. Crucial to this approach is the proper 
characterization of entities as relation compo-
nents, which allows the integration of the entity 
annotation with the syntactic structure while 
retaining the capacity to annotate and extract 
more complex events. We are training statis-
tical taggers using this annotation for such ex-
traction as well as using them for improving the 
annotation process. 

1 Introduction 

Work over the last few years in literature data mining 
for biology has progressed from linguistically unsophisti-
cated models to the adaptation of Natural Language Pro-
cessing (NLP) techniques that use full parsers (Park et 
al., 2001; Yakushiji et al., 2001) and coreference to ex-
tract relations that span multiple sentences (Pustejovsky 
et al., 2002; Hahn et al., 2002) (For an overview, see 
(Hirschman et al., 2002)). In this work we describe an ap-
proach to two areas of biomedical information extraction, 
drug development and cancer genomics, that is based on 
developing a corpus that integrates different levels of se-
mantic and syntactic annotation. This corpus will be a 
resource for training machine learning algorithms useful 
for information extraction and retrieval and other data-
mining applications. We are currently annotating only 

abstracts, although in the future we plan to expand this to 
full-text articles. We also plan to make publicly available 
the corpus and associated statistical taggers. 

We are collaborating with researchers in the Division 
of Oncology at The Children’s Hospital of Philadelphia, 
with the goal of automatically mining the corpus of can-
cer literature for those associations that link specified 
variations in individual genes with known malignancies. 
In particular we are interested in extracting three entities 
(Gene, Variation Event, and Malignancy) in the follow-
ing relationship: Gene X with genomic Variation Event 
Y is correlated with Malignancy Z. For example, WT1 is 
deleted in Wilms Tumor #5. Such statements found in the 
literature represent individual gene-variation-malignancy 
observables. A collection of such observables serves 
two important functions. First, it summarizes known 
relationships between genes, variation events, and ma-
lignancies in the cancer literature. As such, it can be 
used to augment information available from curated pub-
lic databases, as well as serve as an independent test for 
accuracy and completeness of such repositories. Second, 
it allows inferences to be made about gene, variation, and 
malignancy associations that may not be explicitly stated 
in the literature, both at the fact and entity instance lev-
els. Such inferences provide testable hypotheses and thus 
future research targets. 

The other major area of focus, in collaboration with 
researchers in the Knowledge Integration and Discov-
ery Systems group at GlaxoSmithKline (GSK), is the ex-
traction of information about enzymes, focusing initially 
on compounds that affect the activity of the cytochrome 
P450 (CYP) family of proteins. For example, the goal is 
to see a phrase like 

Amiodarone weakly inhibited CYP2C9, 
CYP2D6, and CYP3A4-mediated activities 
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with Ki values of 45.1–271.6 ��� 
and extract the facts 

amiodarone inhibits CYP2C9 with 
Ki=45.1-271.6 

amiodarone inhibits CYP2D6 with 
Ki=45.1-271.6 

amiodarone inhibits CYP3A4 with 
Ki=45.1-271.6 

Previous work at GSK has used search algorithms that 
are based on pattern matching rules filling template slots. 
The rules rely on identifying the relevant passages by first 
identifying compound names and then associating them 
with a limited number of relational terms such as inhibit 
or inactivate. This is similar to other work in biomedical 
extraction projects (Hirschman et al., 2002). 

Creating good pattern-action rules for an IE problem is 
far from simple. There are many complexities in the dif-
ferent ways that a relation can be expressed in language, 
such as syntactic alternations and the heavy use of co-
ordination. While sufficiently complex patterns can deal 
with these issues, it requires a good amount of time and 
effort to build such hand-crafted rules, particularly since 
such rules are developed for each specific problem. A 
corpus that is annotated with sufficient syntactic and se-
mantic structure offers the promise of training taggers for 
quicker and easier information extraction. 

The corpus that we are developing for the two differ-
ent application demands consists of three levels of anno-
tation: the entities and relations among the entities for the 
oncology or CYP domain, syntactic structure (Treebank), 
and predicate-argument structure (Propbank). This is a 
novel approach from the point-of-view of NLP since pre-
vious efforts at Treebanking and Propbanking have been 
independent of the special status of any entities, and pre-
vious efforts at entity annotation have been independent 
of corresponding layers of syntactic and semantic struc-
ture. The decomposition of larger entities into compo-
nents of a relation, worthwhile by itself on conceptual 
grounds for entity definition, also allows the component 
entities to be mapped to the syntactic structure. These 
entities can be viewed as semantic types associated with 
syntactic constituents, and so our expectation is that au-
tomated analyses of these related levels will interact in a 
mutually reinforcing and beneficial way for development 
of statistical taggers. Development of such statistical tag-
gers is proceeding in parallel with the annotation effort, 
and these taggers help in the annotation process, as well 
as being steps towards automatic extraction. 

In this paper we focus on the aspects of this project 
that have been developed and are in production, while 
also trying to give enough of the overall vision to place 
the work that has been done in context. Section 2 dis-
cusses some of the main issues around the development 

of the guidelines for entity annotation, for both the on-
cology and inhibition domains. Section 3 first discusses 
the overall plan for the different levels of annotation, and 
then focuses on the integration of the two levels currently 
in production, entity annotation and syntactic structure. 
Section 4 describes the flow of the annotation process, 
including the development of the statistical taggers men-
tioned above. Section 5 is the conclusion. 

2 Guidelines for Entity Annotation 

Annotation has been proceeding for both the oncology 
and the inhibition domains. Here we give a summary of 
the main features of the annotation guidelines that have 
been developed. We have been influenced in this by pre-
vious work in annotation for biomedical information ex-
traction (Ohta et al., 2002; Gaizauskas et al., 2003). How-
ever, we differ in the domains we are annotating and the 
design philosophy for the entity guidelines. For exam-
ple, we have been concentrating on explicit concepts for 
entities like genes rather than developing a wide-range 
ontology for the various physical instantiations. 

2.1 Oncology Domain 

Gene Entity For the sake of this project the defini-
tion for ”Gene Entity” has two significant characteristics. 
First, ”Gene” refers to a composite entity as opposed to 
the strict biological definition. As has been noted by oth-
ers, there are often ambiguities in the usage of the en-
tity names. For example, it is sometimes unclear as to 
whether it is the gene or protein being referenced, or the 
same name might refer to the gene or the protein at dif-
ferent locations in the same document. Our approach to 
this problem is influenced by the named entity annota-
tion in the Automatic Content Extraction (ACE) project 
(Consortium, 2002), in which “geopolitical” entities can 
have different roles, such as “location” or “organization”. 
Analogously, we consider a “gene” to be a composite en-
tity that can have different roles throughout a document. 
Standardization of ”Gene” references between different 
texts and between gene synonyms is handled by exter-
nally referencing each instance to a standard ontology 
(Ashburner et al., 2000). 

In the context of this project, ”Gene” refers to a con-
ceptual entity as opposed to the specific manifestation of 
a gene (i.e. an allele or nucleotide sequence). Therefore, 
we consider genes to be abstract concepts identifying ge-
nomic regions often associated with a function, such as 
MYC or TrkB; we do not consider actual instances of 
such genes within the gene-entity domain. Since we are 
interested in the association between Gene-entities and 
malignancies, for this project genes are of interest to us 
when they have an associated variation event. Therefore, 
the combination of Gene entities and Variation events 



provides us with an evoked entity representing the spe-
cific instance of a gene. 

Variation Events as Relations Variations comprise a 
relationship between the following entities: Type (e.g. 
point mutation, translocation, or inversion), Location 
(e.g. codon 14, 1p36.1, or base pair 278), Original-State 
(e.g. Alanine), and Altered-State (e.g. Thymine). These 
four components represent the key elements necessary 
to describe any genomic variation event. Variations are 
often underspecified in the literature, frequently having 
only two or three of these specifications. Characterizing 
individual variations as a relation among such compo-
nents provides us with a great deal of flexibility: 1) it al-
lows us to capture the complete variation event even when 
specific components are broadly spaced in the text, often 
spanning multiple sentences or even paragraphs; 2) it pro-
vides us with a convenient means of tracking anaphora 
between detailed descriptions (e.g. a point mutation at 
codon 14 and summary references (e.g. this variation); 
and 3) it provides a single structure capable of capturing 
the breadth of variation specifications (e.g. A- � T point 
mutation at base pair 47, A48-� G or t(11;14)(q13;32)). 

Malignancy The guidelines for malignancy annotation 
are under development. We are planning to define it in a 
manner analogous to variation, whereby a Malignancy is 
composed of various attribute types (such as developmen-
tal stage, behavior, topographic site, and morphology). 

2.2 CYP Domain 

In the CYP Inhibition annotation task we are tagging 
three types of entities: 

1. CYP450 enzymes (cyp) 

2. other substances (subst) 

3. quantitative measurements (quant) 

Each category has its own questions and uncertain-
ties. Names like CYP2C19 and cytochrome P450 en-
zymes proclaim their membership, but there are many 
aliases and synonyms that do not proclaim themselves, 
such as 17,20-lyase. We are compiling a list of such 
names. 

Other substances is a potentially huge and vaguely-
delimited set, which in the current corpus includes grape-
fruit juice and red wine as well as more obviously bio-
chemical entities like polyunsaturated fatty acids and ery-
thromycin. The quantitative measurements we are di-
rectly interested in are those directly related to inhibition, 
such as IC50 and K(i). We tag the name of the measure-
ment, the numerical value, and the unit. For example, in 
the phrase ...was inhibited by troleandomycin (ED50 = 1 
microM), ED50 is the name, 1 the value, and microM the 

unit. We are also tagging other measurements, since it 
is easy to do and may provide valuable information for 
future IE work. 

3 Integrated Annotation 

As has been noted in the literature on biomedical IE (e.g., 
(Pustejovsky et al., 2002; Yakushiji et al., 2001)), the 
same relation can take a number of syntactic forms. For 
example, the family of words based on inhibit occurs 
commonly in MEDLINE abstracts about CYP enzymes 
(as in the example in the introduction) in patterns like A 
inhibited B, A inhibited the catalytic activity of B, inhibi-
tion of B by A, etc. 

Such alternations have led to the use of pattern-
matching rules (often hand-written) to match all the rele-
vant configurations and fill in template slots based on the 
resulting pattern matches. As discussed in the introduc-
tion, dealing with such complications in patterns can take 
much time and effort. 

Our approach instead is to build an annotated corpus 
in which the predicate-argument information is annotated 
on top of the parsing annotations in the Treebank, the re-
sulting corpus being called a “proposition bank” or Prop-
bank. This newly annotated corpus is then used for train-
ing processors that will automatically extract such struc-
tures from new examples. 

In a Propbank for biomedical text, the types of in-
hibit examples listed above would consistently have their 
compounds labeled as Arg0 and their enzymes labeled as 
Arg1, for nominalized forms such as A is an inhibitor of 
B, A caused inhibition of B, inhibition of B by A, as well 
the standard A inhibits B. We would also be able to la-
bel adjuncts consistently, such as the with prepositional 
phrase in CYP3A4 activity was decreased by L, S and F 
with IC(50) values of about 200 mM. In accordance with 
other Calibratable verbs such as rise, fall, decline, etc., 
this phrase would be labeled as an Arg2-EXTENT, re-
gardless of its syntactic role. 

A Propbank has been built on top of the Penn Tree-
bank, and has been used to train “semantic taggers”, for 
extracting argument roles for the predicates of interest, 
regardless of the particular syntactic context.1 

Such semantic taggers have been developed by using 
machine learning techniques trained on the Penn Prop-
bank (Surdeanu et al., 2003; Gildea and Palmer, 2002; 
Kingsbury and Palmer, 2002). However, the Penn Tree-
bank and Propbank involve the annotation of Wall Street 
Journal text. This text, being a financial domain, differs 
in significant ways from the biomedical text, and so it is 

1The Penn Propbank is complemented by NYU’s Nom-
bank project (Meyers, October 2003), which includes tagging 
of nominal predicate structure. This is particular relevant for 
the biomedical domain, given the heavy use of nominals such 
mutation and inhibition. 



necessary for this approach to have a corpus of biomed-
ical texts such as MEDLINE articles annotated for both 
syntactic structure (Treebanking) and shallow semantic 
structure (Propbanking). 

In this project, the syntactic and semantic annotation is 
being done on a corpus which is also being annotated for 
entities, as described in Section 2. Since semantic tag-
gers of the sort described above result in semantic roles 
assigned to syntactic tree constituents, it is desirable to 
have the entities correspond to syntactic constituents so 
that the semantic roles are assigned to entities. The en-
tity information can function as type information and be 
taken advantage of by learning algorithms to help charac-
terize the properties of the terms filling specified roles in 
a given predicate. 

This integration of these three different annotation lev-
els, including the entities, is being done for the first time2, 
and we discuss here three main challenges to this corre-
spondence between entities and constituents: (1) entities 
that are large enough to cut across multiple constituents, 
(2) entities within prenominal modifiers, and (3) coordi-
nation.3 

Relations and Large Entities One major area of con-
cern is the possibility of entities that contain more than 
one syntactic constituent and do not match any node in 
the syntax tree. For example, as discussed in Section 2, a 
variation event includes material on a variation’s type, lo-
cation, and state, and can cut not only across constituents, 
but even sentences and paragraphs. A simple example is 
point mutations at codon 12, containing both the nominal 
(the type of mutation) and following NP (the location). 
Note that while in isolation this could also be considered 
one syntactic constituent, the NP and PP together, the ac-
tual context is ...point mutations at codon 12 in duode-
nal lavage fluid.... Since all PPs are attached at the same 
level, at codon 12 and in duodenal lavage fluid are sis-
ters, and so there is no constituent consisting of just point 
mutations at codon 12. 

Casting the variation event as a relation between dif-
ferent component entities allows the component entities 
to correspond to tree constituents, while retaining the ca-
pacity to annotate and search for more complex events. 
In this case, one component entity point mutations cor-

2An influential precursor to this integration is the system de-
scribed in (Miller et al., 1996). Our work is in much the same 
spirit, although the representation of the predicate-argument 
structure via Propbank and the linkage to the entities is quite 
different, as well as of course the domain of annotation. 

3There are cases where the entities are so minimal that they 
are contained within a NP, not including the determiner, such as 
CpG site in the NP a CpG site. entities. We are not as concerned 
about these cases since we expect that such entity information 
properly contained within a base NP can be associated with the 
full base NP. 

responds to a (base) NP node, and at codon 12 is corre-
sponds to the PP node that is the NP’s sister. At the same 
time, the relation annotation contains the information re-
lating these two constituents. 

Similarly, while the malignancy entity definition is cur-
rently under development, as mentioned in Section 2.1, a 
guiding principle is that it will also be treated as a relation 
and broken down into component entities. While this also 
has conceptual benefits for the annotation guidelines, it 
has the fortunate effect of making such otherwise syntax-
unfriendly malignancies as colorectal adenomas contain-
ing early cancer and acute myelomonocytic leukemia in 
remission amenable for mapping the component parts to 
syntactic nodes. 

Entities within Prenominal Modifiers While we are 
for the most part following the Penn Treebank guide-
lines (Bies et al., 1995), we are modifying them in two 
important aspects. One concerns the prenominal mod-
ifiers, which in the Penn Treebank were left flat, with 
no structure, but in this biomedical domain contain much 
of the information - e.g., cancer-associated autoimmune 
antigen. Not only would this have had no annotation 
for structure, but even more bizarrely, cancer-associated 
would have been a single token in the Penn Treebank, 
thus making it impossible to capture the information as 
to what is associated with what. We have developed new 
guidelines to assign structure to prenominal entities such 
as breast cancer, as well as changed the tokenization 
guidelines to break up tokens such as cancer-associated. 

Coordination We have also modified the treebank an-
notation to account for the well-known problem of enti-
ties that are discontinuous within a coordination structure 
- e.g., K- and H-ras, where the entities are K-ras and H-
ras. Our annotation tool allows for discontinuous entities, 
so that both K-ras and H-ras are annotated as genes. 

Under standard Penn Treebank guidelines for tokeniza-
tion and syntactic structure, this would receive the flat 
structure 

NP 

K- and H-ras 

in which there is no way to directly associate the entity 
K-ras with a constituent node. 

We have modified the treebank guidelines so that K-ras 
and H-ras are both constituents, with the ras part of K-ras 
represented with an empty category co-indexed with ras 
in H-ras:4. 

4This is related to the approach to coordination in the GE-
NIA project. 



NP 

NP and NP 

K - NX-1 H - NX-1 

*P* ras 

4 Annotation Process 

We are currently annotating MEDLINE abstracts for both 
the oncology and CYP domains. The flowchart for the 
annotation process is shown in Figure 1. Tokenization, 
POS-tagging, entity annotation (both domains), and tree-
banking are in full production. Propbank annotation and 
the merging of the entities and treebanking remain to be 
integrated into the current workflow. The table in Fig-
ure 2 shows the number of abstracts completed for each 
annotation area. 

The annotation sequence begins with tokenization and 
part-of-speech annotating. While both aspects are simi-
lar to those used for the Penn Treebank, there are some 
differences, partly alluded to in Section 3. Tokens are 
somewhat more fine-grained than in the Penn Treebank, 
so that H-ras, e.g., would consist of three tokens: H, -, 
and ras. 

Tokenized and part-of-speech annotated files are then 
sent to the entity annotators, either for oncology or CYP, 
depending on which domain the abstract has been chosen 
for. The entities described in Section 2 are annotated at 
this step. We are using WordFreak, a Java-based linguis-
tic annotation tool5, for annotation of tokenization, POS, 
and entities. Figure 3 is a screen shot of the oncology do-
main annotation, here showing a variation relation being 
created out of component entities for type and location. 

In parallel with the entity annotation, a file is tree-
banked - i.e., annotated for its syntactic structure. Note 
that this is done independently of the entity annotation. 
This is because the treebanking guidelines are relatively 
stable (once they were adjusted for the biomedical do-
main as described in Section 3), while the entity defini-
tions can require a significant period of study before sta-
bilizing, and with the parallel treatment the treebanking 
can proceed without waiting for the entity annotation. 

However, this does mean that to produce the desired 
integrated annotation, the entity and treebanking annota-
tions need to be merged into one representation. The con-
sideration of the issues described in Section 3 has been 
carried out for the purpose of allowing this integration 
of the treebanking and entity annotation. This has been 
completed for some pilot documents, but the full merging 
remains to be integrated into the workflow system. 

5http://www.sf.net/projects/wordfreak 

As mentioned in the introduction, statistical taggers 
are being developed in parallel with the annotation effort. 
While such taggers are part of the final goal of the project, 
providing the building blocks for extracting entities and 
relations, they are also useful in the annotation process 
itself, so that the annotators only need to perform correc-
tion of automatically tagged data, instead of starting from 
scratch. 

Until recently (Feb. 10), the part-of-speech annotation 
was done by hand-correcting the results of tagging the 
data with a part-of-speech tagger trained on a modified 
form of the Penn Treebank.6 The tagger is a maximum-
entropy model utilizing the opennlp package available 
at http://www.sf.net/projects/opennlp. It 
has now been retrained using 315 files (122 from the 
oncology domain, 193 from the cyp domain). Figure 4 
shows the improvement of the new vs. the old POS tag-
ger on the same 294 files that have been hand-corrected. 
These results are based on testing files that have already 
been tokenized, and thus are an evaluation only of the 
POS tagger and not the tokenizer. While not directly 
comparable to results such as (Tateisi and Tsujii, 2004), 
due to the different tag sets and tokenization, they are in 
the same general range.7 

The oncology and cyp entity annotation, as well as the 
treebanking are still being done fully manually, although 
that will change in the near future. Initial results for a tag-
ger to identify the various components of a variation re-
lation are promising, although not yet integrated into an-
notation process. The tagger is based on the implementa-
tion of Conditional Random Fields (Lafferty et al., 2001) 
in the Mallet toolkit (McCallum, 2002). Briefly, Condi-
tional Random Fields are log-linear models that rely on 
weighted features to make predictions on the input. Fea-
tures used by our system include standard pattern match-
ing and word features as well as some expert-created reg-
ular expression features8. Using 10-fold cross-validation 
on 264 labelled abstracts containing 551 types, 1064 lo-

6Roughly, Penn Treebank tokens were split at hyphens, with 
the individual components then sent through a Penn Treebank-
trained POS tagger, to create training data for another POS tag-
ger. For example (JJ York-based) is treated as (NNP 
York) (HYPH -) (JJ based). While this works rea-
sonably well for tokenization, the POS tagger suffered severely 
from being trained on a corpus with such different properties. 

7The tokenizer has also been retrained and the new tokenizer 
is being used for annotation, although although we do not have 
the evaluation results here. 

8e.g., chr|chromosome [1-9]|1[0-9]|2[0-
2]|X|Y p|q 
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Entity Annotation 

Tokenization 
POS Annotation 

Merged Entity/ 
Treebank Annotation 

Treebank/Propbank 
Annotation 

Figure 1: Annotation Flow 

Annotation Task Start Date Annotated Documents 
Part-of-Speech Tagging 8/22/03 422 

Entity Tagging 9/12/03 414 
Treebanking 1/8/04 127 

Figure 2: Current Annotation Production Results 

Figure 3: Relation Annotation in WordFreak 



Tagger Training Material Token Instances 
Old Sections 00-15 Penn Treebank 773832 
New 315 abstracts 103159 

Tagger Overall Accuracy Number Token Instances 
Unseen in Training Data 

Accuracy on 
Unseen 

Accuracy on 
Seen 

Old 88.53% 14542 58.80% 95.53% 
New 97.33% 4096 85.05% 98.02% 

(Testing Material: 294 abstracts from the oncology domain, with 76324 token instances.) 

Figure 4: Evaluation of Part-of-Speech Taggers 

cations and 557 states, we obtained the following results: Acknowledgements 

Entity Precision Recall F-measure 
Type 0.80 0.72 0.76 

Location 0.85 0.73 0.79 
State 0.90 0.80 0.85 

Overall 0.86 0.75 0.80 

An entity is considered correctly identified if and only 
if it matches the human labeling by both category (type, 
location or state) and span (from position a to position b). 
At this stage we have not distinguished between initial 
and final states. 

While it is difficult to compare taggers that tag 
different types of entities (e.g., (Friedman et al., 2001; 
Gaizauskas et al., 2003)), CRFs have been utilized for 
state-of-the-art results in NP-chunking and gene and 
protein tagging (Sha and Pereira, 2003; McDonald 
and Pereira, 2004) Currently, we are beginning to 
investigate methods to identify relations over the varia-
tion components that are extracted using the entity tagger. 

5 Conclusion 

We have described here an integrated annotation ap-
proach for two areas of biomedical information extrac-
tion. We discussed several issues that have arisen for this 
integration of annotation layers. Much effort has been 
spent on the entity definitions and how they relate to the 
higher-level concepts which are desired for extraction. 
There are promising initial results for training taggers to 
extract these entities. 

Next steps in the project include: (1) continued anno-
tation of the layers we are currently doing, (2) integra-
tion of the level of predicate-argument annotation, and 

The project described in this paper is based at the In-
stitute for Research in Cognitive Science at the Uni-
versity of Pennsylvania and is supported by grant EIA-
0205448 from the National Science Foundation’s Infor-
mation Technology Research (ITR) program. 

We would like to thank Aravind Joshi, Jeremy 
Lacivita, Paula Matuszek, Tom Morton, and Fernando 
Pereira for their comments. 
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