

Fast Linear methods for linguistics (Eigenword-based language models from large corpora)

Dean P. Foster

talk title

Probably better title for talk:

'Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- Unfortunately it was written by me.
- by Halko, Martinsson, and Tropp.
- But it is currently my favorite paper.

Mathematical summary

problem Find a low rank approximation to a matrix *M*. solution Multiply a random matrix times *M* and "clean it up."

Mathematical summary

problem Find a low rank approximation to a matrix M. solution Multiply a random matrix times M and "clean it up." outline Applying this method to words:

- bilinear: defining eigenwords
- trilinear: applying eigenwords to HMM
- tetralinear: clustering

BI-LINEAR: CCA for Semi-supervised data

CCA: Usual data table for data mining

$$\left[\begin{array}{c} Y \\ (n \times 1) \end{array}\right] \left[\begin{array}{c} X \\ (n \times p) \end{array}\right]$$

with $p \gg n$

With unlabeled data

m rows of unlabeled data:

$$\left[\begin{array}{c} Y \\ n \times 1 \end{array}\right] \qquad \left[\begin{array}{c} X \\ (n+m) \times p \end{array}\right]$$

With alternative X's

m rows of unlabeled data, and two sets of equally useful X's:

$$\begin{bmatrix} Y \\ n \times 1 \end{bmatrix} \begin{bmatrix} X \\ (n+m) \times p \end{bmatrix} \begin{bmatrix} Z \\ (n+m) \times p \end{bmatrix}$$

With: $m \gg n$

Examples

- Named entity recognition
 - Y = person / place
 - X = name itself
 - Z = words before target
- Topic identification (medline)
 - Y = topic
 - X = abstract
 - Z = text
- Speaker identification:
 - Y = which character is speaking in a sitcom
 - X = sound track
 - Z = video

What if we run CCA on *X* and *Z*?

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)

What if we run CCA on *X* and *Z*?

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)
- The Main Result

Theorem (Foster and Kakade, '06)

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$\mathsf{Risk}(\hat{eta}) \leq \left(5\alpha + rac{\sum \lambda_i^2}{n}\right)\sigma^2$$

What if we run CCA on X and Z?

CCA = canonical correlation analysis

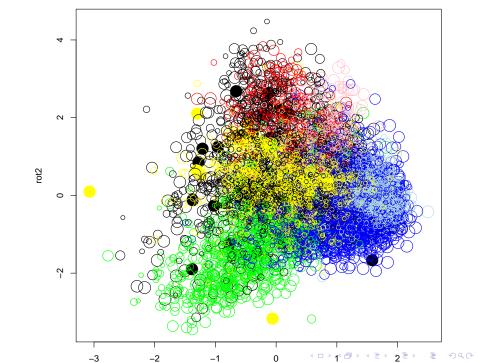
- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)
- The Main Result

Theorem (Foster and Kakade, '06)

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

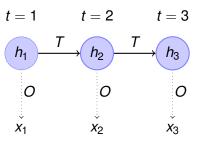
$$\mathsf{Risk}(\hat{eta}) \leq \left(5\alpha + rac{\sum \lambda_i^2}{n}\right)\sigma^2$$

Let's take a quick look at such CCA variables



TRI-LINEAR: HMMs

The Hidden Markov Model



Reduced Dimension Hidden Markov Model

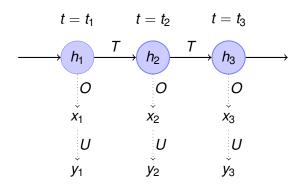


Figure: The *Y*'s are our eigenfeatures.

Reduced Dimension Hidden Markov Model

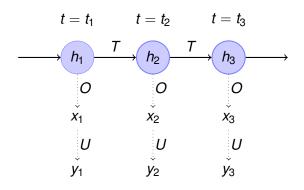


Figure: The Y's are our eigenfeatures.

$$Pr(x_t, ..., x_1) = \mathbf{1}^T T \operatorname{diag}(OU^T y_t) \cdots T \operatorname{diag}(OU^T y_1) \pi$$

HMM theorem

Theorem (with Rodu, Ungar)

Let X_t be generated by an $m \ge 2$ state HMM. Suppose we are given a U which has the property that range(O) \subset range(U) and $|U_{ij}| \le 1$. Using N independent triples, we have

$$N \geq \frac{128m^2(2t+3)^2}{\epsilon^2 \Lambda^2 \sigma_m^4} \log \left(\frac{2m}{\delta}\right) \cdot \underbrace{\frac{\epsilon^2/(2t+3)^2}{\left(\frac{2t+3}{\sqrt{1+\epsilon}}-1\right)^2}}_{\approx 1}$$

implies that

$$1 - \epsilon \le \left| \frac{\widehat{\mathsf{Pr}}(x_1, \dots, x_t)}{\mathsf{Pr}(x_1, \dots, x_t)} \right| \le 1 + \epsilon$$

holds with probability at least $1 - \delta$.

Results on ConLL task

- Results on 2 NLP sequence labeling problems: NER (CoNLL '03 shared task) and Chunking (CoNLL '00 shared task).
- \bullet Trained on \sim 65 million tokens of unlabeled text in a few hours!

Relative reduction in error over state-of-the-art:

Embedding/Model	NER	Chunking
C&W	15.0%	18.8%
HLBL	19.5%	20.2%
Brown	12.1%	18.7%
Ando+Zhang	5.6%	14.6%

Extending to trees

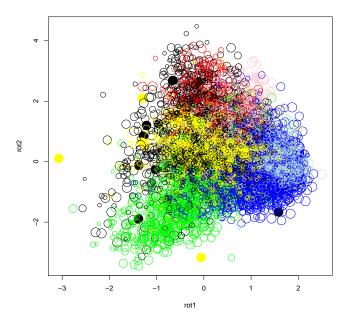
Theorem (with Rodu, Ungar, Dhillon, Collins)

Same as before—but for dependency parse trees.

Ran Dependency parsing on Penn Treebank

- Raw MST Parser is 91.8% accurate
- Adding eigenwords: 2.6% error reduction
- eigenwords plus Re-ranking: 7.3% error reduction

TETRA-LINEAR: Clustering



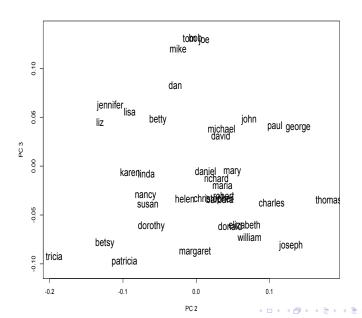
If you rotate this, you will see there are "pointy" directions

Clustering theorem

Theorem (with Hsu, Kakade, Liu, Anima, NIPS 2012)

Maximizing $E(\mu^{\top}X)^4$ will find the natural coordinate system for LDA.

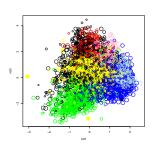
Sample direction sticking out of the main body of data



Conclusions

Linear methods:

- have nice math.
- are useful for real questions.
- are fast on computers.



Colors:

- nouns = Blue (dark = NN1, light = NN2)
- verbs = red (dark = VV1, light = VV2)
- adj = green
- unk = yellow
- black = all else

Size = 1/Ziff order, top 50 are solid, rest are open.