

Fast Linear methods for linguistics

(Eigenword-based language models from large corpora)

Dean P. Foster

Probably better title for talk:
'Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions"

- Unfortunately it was written by me.
- by Halko, Martinsson, and Tropp.
- But it is currently my favorite paper.
problem Find a low rank approximation to a matrix M. solution Multiply a random matrix times M and "clean it up."
problem Find a low rank approximation to a matrix M. solution Multiply a random matrix times M and "clean it up."
outline Applying this method to words:
- bilinear: defining eigenwords
- trilinear: applying eigenwords to HMM
- tetralinear: clustering

BI-LINEAR: CCA for Semi-supervised data

$$
\left[\begin{array}{c}
Y \\
(n \times 1)
\end{array}\right]\left[\begin{array}{c}
X \\
(n \times p)
\end{array}\right]
$$

with $p \gg n$
m rows of unlabeled data:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p \\
\end{array}\right]
$$

m rows of unlabeled data, and two sets of equally useful X 's:

$$
\left[\begin{array}{c}
Y \\
n \times 1
\end{array}\right]\left[\begin{array}{c}
X \\
(n+m) \times p
\end{array}\right]
$$

With: $m \gg n$

- Named entity recognition
- $\mathrm{Y}=$ person / place
- X = name itself
- $\mathrm{Z}=$ words before target
- Topic identification (medline)
- $Y=$ topic
- $\mathrm{X}=$ abstract
- $\mathrm{Z}=$ text
- Speaker identification:
- $\mathrm{Y}=$ which character is speaking in a sitcom
- $\mathrm{X}=$ sound track
- $Z=$ video

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)
- The Main Result

Theorem (Foster and Kakade, '06)

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

CCA = canonical correlation analysis

- Find the directions that are most highly correlated
- Close to PCA (principal components analysis)
- The Main Result

Theorem (Foster and Kakade, '06)

Let $\hat{\beta}$ be the Ridge regression estimator with weights induced by the CCA. Then

$$
\operatorname{Risk}(\hat{\beta}) \leq\left(5 \alpha+\frac{\sum \lambda_{i}^{2}}{n}\right) \sigma^{2}
$$

- Let's take a quick look at such CCA variables

TRI-LINEAR: HMMs

Figure: The Y 's are our eigenfeatures.

Figure: The Y 's are our eigenfeatures.

$$
\operatorname{Pr}\left(x_{t}, \ldots, x_{1}\right)=1^{\top} T \operatorname{diag}\left(O U^{\top} y_{t}\right) \cdots T \operatorname{diag}\left(O U^{\top} y_{1}\right) \pi
$$

Theorem (with Rodu, Ungar)

Let X_{t} be generated by an $m \geq 2$ state HMM. Suppose we are given a U which has the property that range $(O) \subset$ range (U) and $\left|U_{i j}\right| \leq 1$. Using N independent triples, we have

$$
N \geq \frac{128 m^{2}(2 t+3)^{2}}{\epsilon^{2} \Lambda^{2} \sigma_{m}^{4}} \log \left(\frac{2 m}{\delta}\right) \cdot \overbrace{\frac{\epsilon^{2} /(2 t+3)^{2}}{(\sqrt[2 t+3]{1+\epsilon}-1)^{2}}}^{\approx 1}
$$

implies that

$$
1-\epsilon \leq\left|\frac{\widehat{\operatorname{Pr}}\left(x_{1}, \ldots, x_{t}\right)}{\operatorname{Pr}\left(x_{1}, \ldots, x_{t}\right)}\right| \leq 1+\epsilon
$$

holds with probability at least $1-\delta$.

- Results on 2 NLP sequence labeling problems: NER (CoNLL '03 shared task) and Chunking (CoNLL '00 shared task).
- Trained on ~ 65 million tokens of unlabeled text in a few hours!

Relative reduction in error over state-of-the-art:

Embedding/Model	NER	Chunking
C\&W	15.0%	18.8%
HLBL	19.5%	20.2%
Brown	12.1%	18.7%
Ando+Zhang	5.6%	14.6%

Theorem (with Rodu, Ungar, Dhillon, Collins)

Same as before-but for dependency parse trees.
Ran Dependency parsing on Penn Treebank

- Raw MST Parser is 91.8% accurate
- Adding eigenwords: 2.6% error reduction
- eigenwords plus Re-ranking: 7.3\% error reduction

TETRA-LINEAR: Clustering

If you rotate this, you will see there are "pointy" directions

Theorem (with Hsu, Kakade, Liu, Anima, NIPS 2012)
Maximizing $E\left(\mu^{\top} X\right)^{4}$ will find the natural coordinate system for LDA.

Linear methods:

- have nice math.
- are useful for real questions.
- are fast on computers.

Colors:

- nouns $=$ Blue $($ dark $=$ NN1, light $=$ NN2 $)$
- verbs $=$ red $($ dark $=$ VV1, light $=$ VV2 $)$
- adj = green
- unk = yellow
- black = all else

Size $=1 /$ Ziff order, top 50 are solid, rest are open.

