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ABSTRACT 
Summary: VTag is an application for identifying the type, 
genomic location and genomic state-change of acquired gen-
omic aberrations described in text. The application uses a 
machine learning technique called conditional random fields. 
VTag was tested with 345 training and 200 evaluation docu-
ments pertaining to cancer genetics. Our experiments resulted 
in 0.8541 precision, 0.7870 recall and 0.8192 F-measure on 
the evaluation set. 
Availability: The software is available at http://www.cis.upenn. 
edu/group/datamining/software_dist/biosfier/. 
Contact: ryantm@cis.upenn.edu 

INTRODUCTION 
The proliferation of biomedical text makes it increasingly 
difficult for the researchers to track and utilize information 
relevant to their interests. Automated information extraction 
techniques can assist in the acquisition, management and 
curation of these data. A necessary first step is the ability 
to automatically recognize biomedical entities in text, which 
is also known in the natural language processing community 
as named entity recognition. 

Development of named entity taggers for biomedical lit-
erature has progressed rapidly in recent years. For example, 
a number of algorithms currently exist for identifying gene 
name instances in text (Collier et al., 2000; Tanabe and Wilbur, 
2002; Yu et al., 2002; GENIA, 2004, http://www-tsujii.is.s. 
u-tokyo.ac.jp/GENIA/). Another, more complex, entity 
recognition task, is the identification of genomic variation text 
mentions, which is applicable both to researchers interested in 
finding disease–genome associations and to mutation database 
curators. We present here VTag, a named entity tagger based 
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upon a conditional random field model that addresses the open 
problem of recognizing variation events in text. To the best of 
our knowledge, VTag is the first directed effort at automated 
literature extraction of acquired molecular-genetic variation 
events, such as point mutations, translocations and dele-
tions. We applied VTag to text describing cancer-associated 
genomic variation. 

TASK 
Our task was to develop an automated method that would 
accurately recognize each component of an acquired genomic 
aberration (hereafter referred to as a variation event) within a 
cancer-specific text (UPenn Biomedical Information Extrac-
tion Group, 2003, http://www.cis.upenn.edu/∼mamandel/ 
annotators/onco/definitions.html). Briefly, we define a vari-
ation event as a specific, one-time alteration at the genomic 
level, and described at the nucleic acid level, amino acid level 
or both. Each variation event is identified by the relationship 
among three variation components: variation type, variation 
location and variation state (both initial and subsequent states). 
As an illustration: 

‘All cases with K-ras codon 12 mutations were found to 
be G to T transversion’ (Wang et al., 2002). 

In this sentence variation component tags would be assigned 
as follows: transversion, variation type; codon 12, variation 
location; G, variation state (initial); and T, variation state 
(subsequent). The relationship among these components 
defines a single variation event. This entity definition is suit-
able for a variety of applications (e.g. other genetic diseases) 
and readily modified to include naturally occurring vari-
ations (e.g. single nucleotide polymorphisms). Furthermore, 
our experience indicates that this definition is generic and 
capable of capturing the details of diverse variation events 
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(e.g. point mutation, translocation, aneuploidy and loss of 
heterozygosity). Therefore, the task was to properly identify 
each of the components independently. 

ALGORITHM 
The core of VTag is a probability model called Conditional 
Random Fields (CRFs) (Lafferty et al., 2001). These models 
are convenient because they allow us to combine the effects 
of many potentially informative features and have previously 
been successfully used for other biomedical named entity 
taggers (McDonald and Pereira, 2004). CRFs model the con-
ditional probability of a tag sequence given an observation 
sequence: 

e i j λifi (tj ,tj −1,O) 

P(T|O) = ,
λifi (t j−1,O)i j j ,t 

T e 

where O is an observation sequence, in our case a sequence of 
tokens in the abstract, and T = t1, t2, . . .  , tn is a correspond-
ing tag sequence in which each tag labels the corresponding 
token with one of TYPE, LOCATION, INITIAL-STATE, 
ALTERED-STATE and OTHER. CRFs are log-linear mod-
els based on a set of feature functions, fi(tj , tj−1, O) that 
map predicates on observation/tag-transition pairs to binary 
values. Each feature has an associated weight, λi , that meas-
ures its effect on the overall choice of tags. These models are 
convenient because they allow us to combine the effects of 
many potentially informative features. For example, we may 
want to include the feature: 

 1.0 = TYPE, tj−1 = TYPE  tj 

fi(tj , tj−1, O) = oj = mutation, oj−1 = point  0 o.w. 

Good features represent informative associations between 
observation predicates and their corresponding labels, and 
should receive high weights. For instance, the above feature 
would most likely receive a high weight, since it is very good 
evidence that a token is a variation type if the token is the word 
‘mutation’, the previous token was ‘point’ and the previous 
token was also part of a variation type. To define the set of 
features, first we created a set of observation predicates. The 
set of observation predicates used by the system include word, 
character-n-gram and orthographic predicates such as capital-
ization. For domain-specific predicates we created a number 
of regular expressions. For example we included the regular 
expression: 

chr|chromosome [1–9]|1[0–9]|2[0–2]|X|Yp|q 

to indicate tokens that might be part of a variation location. 
If a contiguous set of input tokens match a regular expression 
(i.e. ‘chr 17 p’ would match the above expression), then that 
predicate is set to true for all tokens that participated in the 

match. All predicates were then applied over all labels and a 
token window of (−1, 1) to create the final set of features. In 
total, there were 27 feature types with a total of 63 421 unique 
features (a complete list is available in our documentation). 

The CRF parameters (feature weights) λi are trained to 
maximize the penalized log-likelihood of the training data : 

λ2 
ilog P(T|O) − 

σ 2
, 

(T,O) ∈� i 

where the second term controls overfitting by penalizing the 
large weights that would otherwise arise from rarely observed 
features. This maximization has no closed form solution, but 
it can be done efficiently with suitable convex optimization 
methods (Sha and Pereira, 2003). Given a trained model, 
the optimal tag sequence for new examples is found with 
the Viterbi algorithm (Rabiner, 1993). We used the MAL-
LET toolkit (McCallum, 2002, http://mallet.cs.umass.edu) 
implementation of CRF as the core of our model. 

RESULTS 
Our training set abstracts were selected from MEDLINE 
as being relevant to populating a database with facts 
of the form ‘gene X with variation event Y is associ-
ated with malignancy Z’. VTag was trained and tested 
using a corpus of 545 abstracts manually annotated by 
domain specialists. The abstracts were randomly chosen 
from a larger corpus identified as containing variation men-
tions pertaining to cancer. Abstracts were obtained through 
MEDLINE based upon their PubMedIDs and added to a 
customized workflow system. Prior to entity tagging, each 
abstract was tokenized and annotated for part-of-speech. 
Entity tagging was performed by trained annotators using 
a locally developed, open-source tool (WordFreak, 2004, 
http://sourceforge.net/projects/wordfreak). Entity annotators 
manually identified all mentions of the variation compon-
ents and labeled each mention with the appropriate tag (type, 
location, state). 

Manual entity annotations for the three variation compon-
ents were then used to train the variation component tagger. 
Data,documentationandentitydefinitionsareavailablebycon-
tacting the authors (UPenn Biomedical Information Extraction 
Group, 2003). Of the 545 abstracts that were annotated, 345 
were used as training and development data for the system. 
The remaining 200 files were used as evaluation data. The tag-
ger took ∼5 h to train on an Intel Xeon 3.2 GHz Linux server. 
Once trained, VTag can tag a new abstract in under a second. 

For evaluation purposes, an entity was considered cor-
rectly identified if and only if the predicted and manually 
labeled tags were identical in both category (e.g. type, loc-
ation or state) and span (i.e. character positions X through 
Y ). The performance of VTag was calculated according to 
the following metrics: Precision (number of entities predicted 
correctly divided by the total number of entities predicted), 
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Table 1. System performance on evaluation data 

Entity Precision Recall F -measure 

Type 
Location 
State-Initial 
State-Sub 
Overall 

0.8556 
0.8695 
0.8430 
0.8035 
0.8541 

0.7990 
0.7722 
0.8286 
0.7809 
0.7870 

0.8263 
0.8180 
0.8357 
0.7920 
0.8192 

Recall (number of entities predicted correctly divided by 
the total number of entities in the text) and F -measure 
[(2∗Precision∗Recall)/(Precision + Recall)]. Performance 
for individual variation components as well as the overall 
performance is given in Table 1. 

VTag is one of a number of tools under construction as part 
of an information extraction toolkit called BioSFIER (Bio-
logical Software For Information Extraction and Retrieval). 
Performance should increase as additional documents are 
annotated and used for training. A long-term objective of our 
ongoing project is to produce various forms of syntactic and 
semantic annotation of biomedical text documents (Kulick 
et al., 2003) to aid in information extraction, including the 
development of algorithms to extract both named entities 
and events (relationships between entities). VTag serves as 
the foundation for our development of a variation event tag-
ger useful in recognizing relationships between variation 
components. 
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