
Incremental Grammar Development using Finite State Tools

Mike Maxwell
Linguistic Data Consortium
3600 Market St., Suite 810
Philadelphia, PA 19104 USA
maxwell@ldc.upenn.edu

Abstract

Finite State parsing tools are generally
optimized for run-time efficiency. But a
field linguist needs compile-time effi-
ciency, so that incremental changes can
be made quickly as new morphemes are
discovered and grammar rules revised.
Using an available finite state toolkit, the
Xerox xfst program, I show how incre-
mental changes can be rapidly compiled
by extracting the set of morphemes
which can co-occur with a given mor-
pheme, imposing constraints and rules on
only that subset plus the new morpheme,
and merging the constrained subset back
into the larger lexicon.

1 Introduction

Much attention has been devoted to the devel-
opment and optimization of finite state tools for
“language crunching,” i.e. fast processing of
large quantities of text. Such tools work well for
a knowledgeable computational linguist with
access to grammatical and lexical resources for
the target language. The linguist builds and com-
piles a lexicon and a morphological/ phonologi-
cal grammar for the transducer on a fast machine
with ample memory; these are then compiled
together into a more compact form for language
crunching on smaller and/or slower computers.

In contrast, relatively little attention has been
devoted to incremental grammar development,
such as may occur in field research on languages
which have not been extensively studied.1 In this

1 One exception to this generalization is the Boas pro-
ject, described in Oflazer, Nirenburg and McShane
2001. An assumption made for the Boas project which
is not made here is that a trained computational lin-

scenario, a linguist who often knows little or
nothing about finite state transducers, and less
about a particular computational tool (and who
may not have advanced training in linguistics
either), and who may be equipped with a rela-
tively slow computer with limited memory, be-
gins with a very small text corpus, perhaps a few
thousand words, and no grammar or dictionary.
The task thus becomes one of incrementally
building a dictionary and grammar based on a
small (but growing) corpus. Grammar debug-
ging is a crucial part of this task, and one which
inevitably involves revisions and blind alleys.

The focus of this paper is the latter scenario:
incremental development of a grammar and dic-
tionary. In particular, I will focus on the devel-
opment of a morphological grammar, which
includes the following components:

 A dictionary of morphemes, possibly includ-
ing allomorphs;

 Morphotactic restrictions on the morphemes;

 Morphosyntactic restrictions on the mor-
phemes;

 Phonological restrictions on the occurrence of
lexically listed allomorphs; and

 Phonological rules.

I will assume that an alphabetic writing system
exists, and that it will not change during the
grammar development.2 For concreteness, I focus
on the Xerox finite state system, including the

guist will be available throughout the project. Never-
theless, the techniques described in the current paper
to speed up compilation should also be useful under
the scenario described by Oflazer et al.
2 This is often an incorrect assumption, since orthog-
raphies of newly written languages are nearly always
in flux. However, many orthography changes can be
automated using finite state techniques.

mailto:maxwell@ldc.upenn.edu

lexc and xfst programs.3 Finally, I will not dis-
cuss the incremental discovery and implementa-
tion of morphosyntactic restrictions on
morphemes (but see Maxwell, Simons and Haya-
shi 2002 for one approach to this). Nor will I dis-
cuss debugging a sequence of phonological rules,
a topic deserving of another paper.

Section two of this paper describes incre-
mental development of the components listed
above from the field linguist’s perspective. Sec-
tion three describes how finite state tools can
support such incremental grammar development.

2 The Field Linguist’s Perspective

For commercially viable languages, it is usually
feasible to equip a highly trained linguist with a
fast, large memory machine, together with exist-
ing printed or computer-readable grammars and
dictionaries; train the linguist in the specifics of
the chosen finite state tools; and put him or her in
an office for six months or a year to produce the
finite state grammar.4 In contrast, for smaller lan-
guages—particularly minority and endangered
languages—the best person available may have
limited training in computational linguistics. Of-
ten there are no existing grammars or dictionar-
ies; in fact, a dictionary and a human-readable
grammar may be among the desired outputs. The
office may be a hut in the village, and the com-
puter may be an older laptop with limited mem-
ory and speed.5

3 These programs are described in Beesley and Kart-
tunen Forthcoming; see also http://www.xrce.xerox.-
com/competencies/content-analysis/fsmbook/. The
lexc program has largely been replaced by xfst, but
the lexc file format described here remains the same.
4 Another approach involves machine learning of
morphology from corpora (see Goldsmith 2001 and
the papers in SigPhon 2002). While not without its
merits, in the case of minority languages there are
seldom sufficient corpora for this methodology to be
feasible. At any rate, many of the issues discussed in
this paper also arise under corpora-based approaches.
5 The techniques described were tested on a 100 MHz
machine with 32 megabytes of memory, running
Linux. Today’s typical PC is much faster, with more
memory. But people working in minority languages—
particularly in the Third World—often have com-
puters which lag far behind what the commercial or
research world would consider adequate.

In the absence of existing grammars and dic-
tionaries, the field linguist must discover the
grammar and morphemes, a process which may
extend over years. Computer tools should be us-
able during the entire grammar discovery proc-
ess, not just at the end, after the grammar and
dictionary are (ostensibly) analyzed. One tool
which has traditionally proven useful in field
linguistics is interlinear text analysis.6 The lin-
guist begins by transcribing a text, and glossing
it at a relatively high level (often the sentence
level), giving a ‘free translation’. Next, the user
may assign a rough gloss to each word; but this
step is often skipped in favor of glossing at the
morpheme level. For purposes of discussion, I
will assume that the linguist understands the
morphology and lexicon of the language well
enough to mark morpheme (or allomorph) breaks
(subject to revision), and assign at least tentative
glosses and categories to those morphemes.

Thus, in the initial stages of analysis, the user
is finding and glossing allomorphs in texts,
grouping these allomorphs into morphemes, and
assigning meaning to the morphemes—thereby
building a morpheme dictionary.7

The next step is to find phonological con-
straints on individual allomorphs, and morpho-
tactic and morphosyntactic constraints on the
morphemes. Finally, the linguist may generalize
from allomorphy constraints to phonological
rules deriving surface allomorphs from underly-
ing forms (which must also be discovered).

These are not discrete steps; even when the
analysis has reached an advanced state, there is
likely to be an admixture of earlier stages.

Manually marking morpheme breaks and
glossing morphemes quickly becomes fatiguing
and error prone. Most interlinear text processing
programs (such as the widely used Shoebox pro-
gram, SIL 2000) include a parser8, which sug-
gests parses for words in text based on a
dictionary of morphemes and a morphological

6 This task is described in Simons and Versaw 1992.
7 Often a bilingual word dictionary is more useful to
the language community than a morpheme dictionary,
but I will ignore this distinction here; henceforth, the
term ‘dictionary’ will be used to refer to a linguist’s
morpheme lexicon.
8 A finite state parser is actually a transducer capable
of synthesis as well as analysis. The focus in this pa-
per will however be on parsing.

http://www.xrce.xerox.com/competencies/content-analysis/fsmbook/
http://www.xrce.xerox.com/competencies/content-analysis/fsmbook/

grammar. The techniques described below are
intended to be built into such an integrated pro-
gram, but may be adapted to stand-alone use
through an appropriate scripting language.

3 Finite State support for Incremental
Grammar Development

The fundamental requirement for support of in-
cremental grammar development is that small
changes must be fast enough that the user can
continue working with relatively little interrup-
tion. For example, if a user discovers a new mor-
pheme while glossing text, it must be possible to
quickly add it to the dictionary, so that it is im-
mediately available for parsing the text (which
may well contain further instances of the mor-
pheme). Likewise, if the user discovers a phono-
logical constraint on an allomorph, the grammar
development system must allow the user to state
that constraint, and for the parser to immediately
make use of it to constrain the parses it offers.9

In software development, the ability to make
fast incremental changes is typical of interpret-
ers, as opposed to compilers. Finite state tools
which perform heavy optimization resemble
compilers, in that changes potentially force re-
computation of large portions of the network, if
not the entire network. However, certain kinds of
changes, such as unioning two transducers, may
not require such extensive recompilation. The
problem then becomes one of minimizing the
recompilation required when making incremental
changes, by replacing an expensive recompila-
tion with one or more less expensive re-
compilations. It turns out that assuming certain
finite state operations have been implemented in
an efficient way (as they have been in the Xerox
tools), this is possible for a useful set of other-
wise slow operations.

The first sub-section below discusses the pho-
notactic constraints on allomorphs can be repre-
sented, while the following sub-section discusses
the incremental addition, deletion and modifica-
tion of morphemes.

9 Adding constraints has the potential to invalidate
existing parses. Likewise, adding morphemes to the
dictionary has the potential to provide a better parse
(one the user didn’t think of) for already parsed
words. I do not discuss here the issue of how the sys-
tem might validate already-parsed text.

3.1 Constraining Allomorphs

As discussed above, in early stages of analysis it
may be necessary to posit allomorphs, rather than
deriving allomorphs from underlying forms. I
therefore begin with the definition of allomorphs
and their phonotactic constraints in finite state
terms, since imposing those allomorphy con-
straints is a large factor in slowing the addition
of new morphs or morphemes to the lexicon.

The analysis of allomorphy may be divided
into three stages:

1. At first, the linguist may deal just with allo-
morphs and their conditioning environments.

2. Later, he begins to use phonological rules to
derive some allomorphs from underlying
forms, while other allomorphs will still be de-
scribed distributionally.

3. There may be a third stage in which all allo-
morphs (apart from suppletion) are derived by
phonological rules.

Computational tools should support all three
stages of analysis. Moreover, there are cases
where allomorphy cannot be plausibly described
in terms of phonological rules (Carstairs 1990,
Maxwell 1996); in such a language, the analysis
can never reach stage (3).

The Xerox tools are really intended for stage
(3), i.e. for rule-based allomorphy. Fortunately,
xfst can handle stages (1) and (2) as well. The
following sub-sections describe how distribu-
tionally based allomorphy can be described in
the Xerox system, while section 3.2 describes
how incremental changes can be handled effi-
ciently.

Allomorph Environments

A common notation for allomorph distribution is
shown in the following example. Suppose we
have a lexeme meaning ‘dog’ with three disjunc-
tively ordered allomorphs:

foo / LEnv1 __ REnv1
foot / LEnv2 __ REnv2
fee / elsewhere

The disjunctive ordering implies that the second
allomorph will appear in the environment
LEnv2__REnv2, except where the environment
also matches LEnv1__REnv1, in which case

the first allomorph must appear. The third allo-
morph—the elsewhere case—appears wherever
neither of the other allomorphs appear.

In the Xerox system, the lexicon is usually
stored in lexc files. Stems with different parts of
speech, or affixes which have different morpho-
tactics, belong to different continuation classes,
represented as follows:10

Lexicon <InLexicon>
 gloss1:form1 <OutLexicon>;
 gloss2:form2 <OutLexicon>;
 ...

But this accounts only for morphotactics; there
is no provision in the lexc formalism for listing
the conditioning environments of allomorphs, i.e.
the phonotactics. Thus, for the lexeme meaning
‘dog’ in the above example, the allomorphs must
be listed in the lexc file as follows (assuming for
illustrative purposes that noun roots are followed
by suffixes marking number):

Lexicon NounRoot
 dog:foo Number ;
 dog:foot Number ;
 dog:fee Number ;
 ...

The phonological constraints on the allo-
morphs must be represented separately, in an xfst
file. In order to capture the disjunctive ordering
implicit in the conceptual notation above, two
constructs are necessary in xfst: restriction rules,
and filters. Restriction rules take the form

<allomorph> =>
 <LeftEnvironment_1> _
 <RightEnvironment_1>

while filters take the form
~[?* <LeftEnvironment_2>
 <Allomorph>
 <RightEnvironment_2>
 ?*]

If the left environment of the filter begins with a
word boundary, or the right environment ends
with a word boundary, the corresponding ‘?*’ is
omitted.11

10 The use of glosses here and elsewhere is for exposi-
tory purposes, since their use results in a much larger
network than would the use of an underlying form
which more or less resembles the surface form.
11 There is a notational shorthand, namely ~$[<left
environment> <allomorph> <right en-
vironment>], meaning any string containing the
specified sequence is disallowed. However, this is not

The allomorph is represented by a string (iden-
tical to the form listed in the lexc file), and the
left and right environments are regular expres-
sions. Then for the above example, we have the
following in xfst:

{foo} => LEnv1 __ REnv1
 !‘foo’ appears only in
 ! this environment
{foot} => LEnv2 __ REnv2
 !‘foot’ appears only in
 ! this environment
~[?* LEnv1 {foot} REnv1 ?*]
 !…except not in environ
 ! for ‘foo’
!‘fee’ can appear anywhere,
! except:
~[?* LEnv1 {fee} REnv1 ?*]
 !…in environ for ‘foo’
~[?* LEnv2 {fee} REnv2 ?*]
 !…or in environ for ‘foot’

(Curly braces are used in an xfst file around a
string representing a sequence of phonemes; this
convention is not used in a lexc file.) Note that
some of these filters may be redundant (if two
allomorphs have mutually distinct environments
of occurrence, or if for the third allomorph, not
being able to occur in the first environment im-
plies not being able to occur in the second envi-
ronment). But this usually does no harm, apart
from making compilation a bit slower.

However, there is a complication: the restric-
tion rules and filters should apply only to entire
allomorphs, not to pieces. That is, the restriction
that the allomorph foo appears only in some en-
vironment should not apply to another morpheme
fool, or indeed to the allomorph foot (should the
‘t’ be compatible with REnv1). This can be ac-
complished in part by the use of morpheme
boundary markers around each allomorph. Thus,
the lexc entries for roots become:

Lexicon NounRoot
 dog:#foo# Number ;
 dog:#foot# Number ;
 dog:#fee# Number ;
 ...

usable for the case where the environment mentions a
word boundary, since word boundaries are not treated
in xfst as characters. They must instead be represented
by the absence of a “?*”at the left or right-hand end of
the environment.

Lexical entries for infixes, like those for roots,
would contain a boundary marker to the left and
right. Since it is only necessary to place a single
boundary marker on each side of each root and
affix, it is sufficient to include in the lexicon a
boundary marker to the left of prefixes and to the
right of suffixes. The resulting notation is similar
to that used in SPE (Chomsky and Halle 1968).
Thus lexical entries for a prefix and a suffix
would look like this:

Lexicon NounPrefix
 REPET:#re Noun ;
 ...
Lexicon NounSuffix
 PROG:ing# # ;
 ...

Regular expressions describing allomorphy
constraints on the above roots in xfst are then:

{#foo#} => LEnv1 __ REnv1 ;
..!Allomorph ‘foo’ appears
 ! only in this environment
{#foot#} => LEnv2 __ REnv2;
 !Alomorph ‘foot’ appears
 ! only in this environment
~[?* LEnv1 {#foot#} REnv1
 ?*];
 !…but not in environment
 ! for ‘foo’
!Alomorph ’fee’ can appear
! anywhere, except:
~[?* LEnv1 {#fee#} REnv1
 ?*]
 !…in environ for ‘foo’…
~[?* LEnv2 {#fee#} REnv2
 ?*]
 !…or in environ for ‘foot’

The regular expressions for affixes would be
similar, referring to the boundary marker on both
sides (one of which belongs to the affix, and one
to the adjacent morpheme).

An additional xfst rule erases the boundary
markers at the end of the derivation:

→ 0 ;

Homographic Allomorphs

Things get still more complicated. Suppose there
are two (or more) lexemes with (at least) one
homographic allomorph between them, but
where the allomorphs of the two lexemes have
different phonological restrictions (whether cor-
rectly, or as an artifact of analysis). It then be-

comes necessary to distinguish homographic
allomorphs. Unfortunately, the gloss given in the
lexc lexicon file is invisible to xfst rules. Fortu-
nately, it is possible to tag the forms in lexc with
diacritics which are visible to xfst. The sample
lexc lexicon file would look like this, where I
have added a verb allomorph which is homo-
graphic to the noun allomorph foo:

Multichar_Symbols +Sg +Pl
 %^H1 %^H2
Lexicon Root
 NounRoot;
 VerbRoot;
Lexicon NounRoot
 dog:foo%^H1 NounSuffix;
 dog:fee NounSuffix;
Lexicon VerbRoot
 run:foo%^H2 VerbSuffix;
 run:fum VerbSuffix;

The diacritic tags ^H1 and ^H2 distinguish the
allomorphs of the two morphemes. The follow-
ing regular expressions implement the distinct
phonological conditions on the allomorphs:

{foo}%^H1 =>
 LEnv1/Flags __ REnv1/Flags
 ~[?* LEnv1/Flags {fee}
 REnv1/Flags ?*]
{foo}%^H2 =>
 LEnv2/Flags __ Renv2/Flags
 ~[?* LEnv2/Flags {fum}
 REnv2/Flags ?*]

The added ‘/ Flags’ means that the regular
immediately preceding expression may contain
any number of ‘Flags’ (a constant defined to in-
clude all homograph tags). A final rule deletes
the tags once they have done their job.

The use of homograph flags requires keeping
track of homographs in the lexicon. Allomorphs
which do not have homographs do not need
flags, but it may be simpler to assign flags to all
allomorphs, so that it does not become necessary
to add a flag to an existing allomorph when a
new homographic allomorph is added. Note that
homograph flags can be re-used, e.g. if there
were no homographs in the entire lexicon, all
allomorphs could use the same flag.

4 Additions and Deletions

In the process of glossing text, a user will inevi-
tably encounter new morphemes, and new allo-
morphs of morphemes. Ideally, these should be

added to the lexicon immediately, since if they
appear in a particular text, there is a good chance
they will appear more than once in that text. The
implication is that addition of morphemes must
be reasonably fast.

The user may also decide that previous deci-
sions about morphemes are incorrect—either a
morpheme does not exist, or (more likely), a pre-
viously added morpheme must be changed.

The obvious way to add, delete or change
morphemes is to re-compile the entire lexicon. In
the early stages of analysis, new morphemes are
likely to be discovered frequently. But because
the lexicon is small at this stage, recompilation
will generally be fast. As the lexicon grows,
however, while the need for adding new lexemes
presumably decreases, recompilation becomes
slower and more memory intensive. At some
point, recompilation may become impractically
slow, particularly if there are significant con-
straints among morphemes.

Timing and memory usage during
(re-)compilation can be adversely affected if a
large number of morphosyntactic constraints be-
tween morphemes are incorporated into the finite
state grammar, particularly if these involve con-
straints between prefixes and suffixes. An alter-
native approach is to check morphosyntactic
constraints at run time, e.g. by using a more tra-
ditional parser to build structure and check fea-
ture constraints over the morphemes that the
finite state transducer finds, or by using the dia-
critic flag technique of the Xerox tools. How-
ever, I will only be considering morphotactics
here, not morphosyntax.

Incremental Addition of Morphemes

When a new morpheme (or allomorph) is added,
allomorphy constraints and phonological rules
are often the limiting factor to rapid recompila-
tion, since the allomorphs which can appear to
the right or left of the new morpheme must be
determined. As analysis progresses, a growing
proportion of new morphemes will be roots,
rather than affixes. This turns out to be fortunate:
apart from compounding and incorporation, what
appears to the left and right of a root is affixes,
and natural languages have more roots than af-
fixes. The addition of roots therefore involves
fewer changes to existing morphemes in the lexi-
con than does the addition of affixes.

Morphotactics of Additions

As mentioned above, recompilation of the lexi-
con as each new morpheme is added can be un-
acceptably slow. Fortunately, recompilation of
the entire lexicon can be avoided by including a
variable in each continuation class in the lexicon
file. These variables act as place holders where
new morphemes can be added, as in the follow-
ing excerpt from a lexc file:

Multichar_Symbols
 +NounRoot #MoreNs
Lexicon +NounRoot
 fox:zorro #;
 #MoreNs #;

The place-holding variable here is ‘#MoreNs’.
The following xfst code can then be used to add
a new noun, with two allomorphs, to the com-
piled version of the above file. (Homographs will
be treated below.)

/*First splice in the
 allomorphs:*/
define ADD [
 {dog}:{sin}
 |{dog}:{sim}
 | %#MoreNs];
substitute defined ADD for
 %#MoreNs;
/*…then define their
 phonological constraints:*/
read regex {sim} =>
 _ BilabialC ;
read regex
 ~[?* {sin} BilabialC ?*];
compose net;

The place-holding variable appears again at the
end of the ‘or’ list in the ‘define’ line, so that it
can be used for further additions of noun roots.

Allomorphy of Additions

The use of the place-holding variables in the lexc
file adds a complication to the allomorphy state-
ments: until an actual morpheme (that is, an al-
lomorph) is spliced into the network in place of
the variable, we don’t know what allomorphs it
can appear with. For example, if we were analyz-
ing English and wanted to splice in new adjec-
tives, we would not know in advance what
allomorph of the in- prefix they would take.
Therefore the constraints on in- must be re-
applied after each new adjective is added.

In more detail: the xfst statements for the Eng-
lish in- prefix might look like this:

define ContSym
 ["#MoreADJs”
 |"#MoreNs”
];
define HomNumbers
 [%^H1|%^H2];
read regex {#il#}%^H1 =>
 _ [l /HomNumbers
 |ContSym] ;
read regex {#ir#}%^H1 =>
 _ [r /HomNumbers
 |ContSym];
read regex {#im#}%^H1 =>
 _ [[Labial]/HomNumbers
 | ContSym];
read regex
 ~[[?* {#in#}%^H1 l
 ?*]/HomNumbers];
read regex
 ~[[?* {#in#}%^H1 r
 ?*]/HomNumbers];
read regex
 ~[[?* {#in#}%^H1
 [Labial]?*]/HomNumbers];

This allows the il- allomorph to appear before an
l, or before any place-holding variable, and simi-
larly for the other allomorphs.

When a real morpheme (or allomorph) is
added, the constraints on allomorphs of co-
occurring morphemes must be imposed. For ex-
ample, on adding the root possible, it is neces-
sary to ensure that only the im- allomorph
appears with it. Since phonological processes
such can apply over long distances, this could
mean the potentially time consuming application
of all the constraints to the entire lexicon.

Speeding up this process of adding a new
morpheme involves the following steps:

1. Selecting the subset of morphemes which can
co-occur with the new morpheme;

2. Adding the new morpheme to that subset to
create a mini-lexicon;

3. Imposing the constraints on just the mini-
lexicon; and

4. Merging the mini-lexicon back in.

Fortunately, these steps are each fast.

Given that derivational affixes can change the
part of speech of the word, it might seem that we
could not know in advance which morphemes
can co-occur with a given stem (step (1)). How-
ever, the grammar itself can tell us this. We first
tell xfst to create a network containing only
placeholder variables. If ContSym is a variable
bound to a list of the continuation placeholders,
and Lex is bound to the current lexicon, then the
following commands

read regex
 ContSym+ .o. Lex ;
define PlaceHoldersOnly;

will result in such a network, i.e. “words” con-
sisting only of placeholders.

We then eliminate all paths except those not
containing the class of the morpheme to be
added. For example, the following command
would display ‘words’ containing noun roots:

read regex [?* “#MoreNs” ?*]
 .o.
 PlaceHoldersOnly;

Applying this to a network for a hypothetical
agglutinative language marking case, gender and
number as suffixes on nouns, the command
‘print words’ might output the following:12

#MoreNs
#MoreNs#MoreNUM
#MoreNs#MoreGENDER
#MoreNs#MORE-
 GENDER#MoreNUM
#MoreNs#MoreCASE
#MoreNs#MORE-
 CASE#MoreNUM
#MoreNs#MORE-
 CASE#MoreGENDER
#MoreNs#MoreCASE#More-
 GENDER#MoreNUM

Next, we eliminate the instances of the given
class, unless words of this class can co-occur
with themselves. For example, to see the words
which co-occur with noun roots, we eliminate the
noun root placeholder itself, unless the language
allows compound nouns. The following com-

12 The set of words can be cyclic, e.g. a nominalizer
can attach to a verb, followed by the attachment of a
verbalizer. Fortunately, print words is smart
enough to output a finite list of words. As will be seen
in a moment, the result is still sufficient to capture all
co-occurring morpheme classes.

mand does this, deleting the first instance of
“#MoreNs” in each word:

read regex
 RestrictedPlaceholders
 .o.
 [“#MoreNs” -> 0 ||
 .#. [?-“#MoreNs”]*_];

Applied to the above output, this gives:
#MoreNUM
#MoreGENDER
#MoreGENDER#MoreNUM
#MoreCASE
#MoreCASE#MoreNUM
#MoreCASE#MoreGENDER
#MoreCASE#MoreGENDER#MoreNUM

Finally, the following command prints out one
instance of each placeholder which can co-occur
with the specified class:

print labels;
Given the above sample data, this outputs:

#MoreGENDER
#MoreCASE
#MoreNUM

The above steps can be done in a single xfst
command, without intermediate variables.

Once the grammar has told us which mor-
phemes co-occur with a given morpheme, there
are three ways to reduce what needs to be com-
puted on adding a new morpheme:

1. Reduce the number of morphemes whose al-
lomorphy co-occurrence constraints need to
be checked against a new morpheme.

2. Reduce the number of allomorphy constraints
that need to be checked.

3. Reduce the application of phonological rules.

I will consider these points in turn.
Point (1) results straightforwardly from know-

ing the classes of morphemes which can (mor-
phosyntactically and morphotactically) co-occur
with the new morpheme. The relevant classes
can be stored in un-compiled or semi-compiled
form, to be used as needed.

Point (2) implies that we can extract the subset
of allomorphy constraints relevant to a particular
morpheme class. Recall that morphemes and
their classes are defined in lexc files, while allo-
morphy constraints are given in xfst files. How-
ever, if both are extracted from a dictionary in

some other form (such as an XML file), filtering
constraints by class is straightforward.

As for point (3), in most cases it is not possi-
ble to reduce the number of phonological rules
which need to be applied, since phonological
rules by definition apply without regard to indi-
vidual morphemes (apart from strata or excep-
tional rule marking). However, the techniques
described above reduce the number of mor-
phemes to which those rules must be re-applied.
That is, the phonological rules need only be ap-
plied to the underlying forms of words resulting
from the known small set of morphemes selected
under point (1) above.

A further complexity arises when a new allo-
morph is added to a morpheme already in the
lexicon; this situation will be addressed below.

Summarizing thus far, the addition of new
morphemes can be sped up by determining
which morphemes can co-occur with the new
morpheme. Just those morphemes are then com-
bined with the new morpheme to create a mini-
lexicon, to which the appropriate constraints and
(all) phonological rules can be applied. The re-
sulting lexicon is then unioned back in with the
main lexicon, a fast operation.

Both the time and memory needed for naïve
additions, and the savings in time and memory
obtained by the methodology outlined here, de-
pend heavily on the size of the lexicon, and even
more so on the nature of the grammar constraints
and rules in a particular language. Hence it
would be fruitless to give exact numbers here.
Suffice to say that With substantial lexicons, the
process of incremental additions described here
can be an order of magnitude faster than recom-
piling the entire lexicon, as shown by tests with
sample data. (The lexicons tested were in the
range of several thousand morphemes.) But since
the constraints operative in a particular language
are generally unknown in advance, the method-
ology described here results in significant sav-
ings in time and memory.

Incrementally Deleting a Morpheme

Deleting a morpheme is straightforward. The
following xfst command removes the morpheme
glossed ‘dog’ (and all its allomorphs) from a
lexicon bound to the variable LEX:

read regex
 ~$[{dog}] .o. LEX;

Incrementally Changing Allomorphs

Returning now to the issue of modifying the al-
lomorphs of an already loaded morpheme: this
can be done by first deleting the morpheme, tak-
ing with it all its existing allomorphs, and then
adding the morpheme and both its old and new
allomorphs and constraints back in. The reason
for deleting the old allomorphs is that some of
them may be restricted to not occur in the envi-
ronment of the new allomorph. If the new allo-
morph were simply added in without changing
the old allomorphs, there might (incorrectly) be
environments where both allomorphs could oc-
cur. Removing the old allomorphs prevents this.

The deletion of the existing morpheme must of
course be done to the entire lexicon, but this is
fast; the addition of the new morpheme, with all
its allomorphs, is done as described earlier.

5 Conclusion

The Xerox Finite State tools are optimized for
run-time efficiency, which can conflict with a
field linguist’s need for compile-time efficiency.
I have described a work-around which allows
rapid incremental changes. The work-around
consists of extracting the set of morphemes
which can co-occur with a given morpheme, im-
posing constraints and rules on only that subset
plus the new morpheme, then adding the con-
strained subset back into the larger lexicon. This
also allows the rapid deletion and modification
of existing morphemes and their allomorphs.

Acknowledgements

Much of the work described here was completed
under the auspices of SIL International, whose
support is gratefully acknowledged. Thanks to
Ken Beesley for suggesting the use of the ‘sub-
stitute defined’ command to add morphemes.

References
Beesley, Kenneth R.; and Lauri Karttunen. Forthcom-

ing. Finite State Morphology: Xerox Tools
and Techniques. Stanford: CSLI.

Carstairs, Andrew. 1990. “Phonologically Condi-
tioned Suppletion”. In Contemporary Mor-
phology, eds. Wolfgang U. Dressler; Hans C.
Luschutzky; Oskar E. Pfeiffer; and John R.

Rennison, x, 320. Berlin: Mouton de
Gruyter.

Chomsky, Noam; and Morris Halle. 1968. The Sound
Pattern of English. New York: Harper &
Row. [Reprinted in 1991, MIT Press]

Goldsmith, John. 2001. “Unsupervised Learning of
the Morphology of a Natural Language”.
Computational Linguistics 27:153-198.

Maxwell, Michael B. 1996. “Two Theories of Mor-
phology, One Implementation”. 1996 Gen-
eral CARLA Conference, 203-230, Waxhaw,
NC.

Maxwell, Michael B.; Gary Simons; and Larry S.
Hayashi. 2002. “A Morphological Glossing
Assistant”. Proceedings of the International
LREC Workshop on Resources and Tools in
Field Linguistics, Las Palmas, Spain.

Oflazer, Kemal; Sergei Nirenburg; and Marjorie
McShane. 2001. “Bootstrapping Morpho-
logical Analyzers by Combining Human
Elicitation and Machine Learning”. Compu-
tational Linguistics 27:59-85.

SigPhon ed. 2002. Workshop on Morphological and
Phonological Learning. New Brunswick, NJ:
ACL.

SIL. 2000. The Linguist's Shoebox: Tutorial and
User's Guide. Waxhaw, North Carolina: SIL.

Simons, Gary; and Larry Versaw. 1992. How to Use
IT: A Guide to Interlinear Text Processing.
Dallas: Summer Institute of Linguistics.

	Acknowledgements

