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Abstract 

Finite State parsing tools are generally 
optimized for run-time efficiency. But a 
field linguist needs compile-time effi-
ciency, so that incremental changes can 
be made quickly as new morphemes are 
discovered and grammar rules revised. 
Using an available finite state toolkit, the 
Xerox xfst program, I show how incre-
mental changes can be rapidly compiled 
by extracting the set of morphemes 
which can co-occur with a given mor-
pheme, imposing constraints and rules on 
only that subset plus the new morpheme, 
and merging the constrained subset back 
into the larger lexicon. 

1 Introduction 

Much attention has been devoted to the devel-
opment and optimization of finite state tools for 
“language crunching,” i.e. fast processing of 
large quantities of text. Such tools work well for 
a knowledgeable computational linguist with 
access to grammatical and lexical resources for 
the target language. The linguist builds and com-
piles a lexicon and a morphological/ phonologi-
cal grammar for the transducer on a fast machine 
with ample memory; these are then compiled 
together into a more compact form for language 
crunching on smaller and/or slower computers. 

In contrast, relatively little attention has been 
devoted to incremental grammar development, 
such as may occur in field research on languages 
which have not been extensively studied.1 In this 

                                                           

                                                                                       

1 One exception to this generalization is the Boas pro-
ject, described in Oflazer, Nirenburg and McShane 
2001. An assumption made for the Boas project which 
is not made here is that a trained computational lin-

scenario, a linguist who often knows little or 
nothing about finite state transducers, and less 
about a particular computational tool (and who 
may not have advanced training in linguistics 
either), and who may be equipped with a rela-
tively slow computer with limited memory, be-
gins with a very small text corpus, perhaps a few 
thousand words, and no grammar or dictionary. 
The task thus becomes one of incrementally 
building a dictionary and grammar based on a 
small (but growing) corpus. Grammar  debug-
ging is a crucial part of this task, and one which 
inevitably involves revisions and blind alleys. 

The focus of this paper is the latter scenario: 
incremental development of a grammar and dic-
tionary. In particular, I will focus on the devel-
opment of a morphological grammar, which 
includes the following components: 

 A dictionary of morphemes, possibly includ-
ing allomorphs; 

 Morphotactic restrictions on the morphemes; 

 Morphosyntactic restrictions on the mor-
phemes;  

 Phonological restrictions on the occurrence of 
lexically listed allomorphs; and 

 Phonological rules. 

I will assume that an alphabetic writing system 
exists, and that it will not change during the 
grammar development.2 For concreteness, I focus 
on the Xerox finite state system, including the 

 
guist will be available throughout the project. Never-
theless, the techniques described in the current paper 
to speed up compilation should also be useful under 
the scenario described by Oflazer et al. 
2 This is often an incorrect assumption, since orthog-
raphies of newly written languages are nearly always 
in flux. However, many orthography changes can be 
automated using finite state techniques. 
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lexc and xfst programs.3 Finally, I will not dis-
cuss the incremental discovery and implementa-
tion of morphosyntactic restrictions on 
morphemes (but see Maxwell, Simons and Haya-
shi 2002 for one approach to this). Nor will I dis-
cuss debugging a sequence of phonological rules, 
a topic deserving of another paper. 

Section two of this paper describes incre-
mental development of the components listed 
above from the field linguist’s perspective. Sec-
tion three describes how finite state tools can 
support such incremental grammar development. 

2 The Field Linguist’s Perspective  

For commercially viable languages, it is usually 
feasible to equip a highly trained linguist with a 
fast, large memory machine, together with exist-
ing printed or computer-readable grammars and 
dictionaries; train the linguist in the specifics of 
the chosen finite state tools; and put him or her in 
an office for six months or a year to produce the 
finite state grammar.4 In contrast, for smaller lan-
guages—particularly minority and endangered 
languages—the best person available may have 
limited training in computational linguistics. Of-
ten there are no existing grammars or dictionar-
ies; in fact, a dictionary and a human-readable 
grammar may be among the desired outputs. The 
office may be a hut in the village, and the com-
puter may be an older laptop with limited mem-
ory and speed.5 

                                                           
3 These programs are described in Beesley and Kart-
tunen Forthcoming; see also http://www.xrce.xerox.-
com/competencies/content-analysis/fsmbook/. The 
lexc program has largely been replaced by xfst, but 
the lexc file format described here remains the same.  
4 Another approach involves machine learning of 
morphology from corpora (see Goldsmith 2001 and 
the papers in SigPhon 2002). While not without its 
merits, in the case of minority languages there are 
seldom sufficient corpora for this methodology to be 
feasible. At any rate, many of the issues discussed in 
this paper also arise under corpora-based approaches.  
5 The techniques described were tested on a 100 MHz 
machine with 32 megabytes of memory, running 
Linux. Today’s typical PC is much faster, with more 
memory. But people working in minority languages—
particularly in the Third World—often have com-
puters which lag far behind what the commercial or 
research world would consider adequate. 

In the absence of existing grammars and dic-
tionaries, the field linguist must discover the 
grammar and morphemes, a process which may 
extend over years. Computer tools should be us-
able during the entire grammar discovery proc-
ess, not just at the end, after the grammar and 
dictionary are (ostensibly) analyzed.  One tool 
which has traditionally proven useful in field 
linguistics is interlinear text analysis.6 The lin-
guist begins by transcribing a text, and glossing 
it at a relatively high level (often the sentence 
level), giving a ‘free translation’. Next, the user 
may assign a rough gloss to each word; but this 
step is often skipped in favor of glossing at the 
morpheme level. For purposes of discussion, I 
will assume that the linguist understands the 
morphology and lexicon of the language well 
enough to mark morpheme (or allomorph) breaks 
(subject to revision), and assign at least tentative 
glosses and categories to those morphemes. 

Thus, in the initial stages of analysis, the user 
is finding and glossing allomorphs in texts, 
grouping these allomorphs into morphemes, and 
assigning meaning to the morphemes—thereby 
building a morpheme dictionary.7  

The next step is to find phonological con-
straints on individual allomorphs, and morpho-
tactic and morphosyntactic constraints on the 
morphemes. Finally, the linguist may generalize 
from allomorphy constraints to phonological 
rules deriving surface allomorphs from underly-
ing forms (which must also be discovered).  

These are not discrete steps; even when the 
analysis has reached an advanced state, there is 
likely to be an admixture of earlier stages.  

Manually marking morpheme breaks and 
glossing morphemes quickly becomes fatiguing 
and error prone. Most interlinear text processing 
programs (such as the widely used Shoebox pro-
gram, SIL 2000) include a parser8, which sug-
gests parses for words in text based on a 
dictionary of morphemes and a morphological 

                                                           
6 This task is described in Simons and Versaw 1992. 
7 Often a bilingual word dictionary is more useful to 
the language community than a morpheme dictionary, 
but I will ignore this distinction here; henceforth, the 
term ‘dictionary’ will be used to refer to a linguist’s 
morpheme lexicon. 
8 A finite state parser is actually a transducer capable 
of synthesis as well as analysis. The focus in this pa-
per will however be on parsing. 
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grammar. The techniques described below are 
intended to be built into such an integrated pro-
gram, but may be adapted to stand-alone use 
through an appropriate scripting language. 

3 Finite State support for Incremental 
Grammar Development 

The fundamental requirement for support of in-
cremental grammar development is that small 
changes must be fast enough that the user can 
continue working with relatively little interrup-
tion. For example, if a user discovers a new mor-
pheme while glossing text, it must be possible to 
quickly add it to the dictionary, so that it is im-
mediately available for parsing the text (which 
may well contain further instances of the mor-
pheme). Likewise, if the user discovers a phono-
logical constraint on an allomorph, the grammar 
development system must allow the user to state 
that constraint, and for the parser to immediately 
make use of it to constrain the parses it offers.9 

In software development, the ability to make 
fast incremental changes is typical of interpret-
ers, as opposed to compilers. Finite state tools 
which perform heavy optimization resemble 
compilers, in that changes potentially force re-
computation of large portions of the network, if 
not the entire network. However, certain kinds of 
changes, such as unioning two transducers, may 
not require such extensive recompilation. The 
problem then becomes one of minimizing the 
recompilation required when making incremental 
changes, by replacing an expensive recompila-
tion with one or more less expensive re-
compilations. It turns out that assuming certain 
finite state operations have been implemented in 
an efficient way (as they have been in the Xerox 
tools), this is possible for a useful set of other-
wise slow operations.  

The first sub-section below discusses the pho-
notactic constraints on allomorphs can be repre-
sented, while the following sub-section discusses 
the incremental addition, deletion and modifica-
tion of morphemes. 

                                                           
9 Adding constraints has the potential to invalidate 
existing parses. Likewise, adding morphemes to the 
dictionary has the potential to provide a better parse 
(one the user didn’t think of) for already parsed 
words. I do not discuss here the issue of how the sys-
tem might validate already-parsed text. 

3.1 Constraining Allomorphs 

As discussed above, in early stages of analysis it 
may be necessary to posit allomorphs, rather than 
deriving allomorphs from underlying forms. I 
therefore begin with the definition of allomorphs 
and their phonotactic constraints in finite state 
terms, since imposing those allomorphy con-
straints is a large factor in slowing the addition 
of new morphs or morphemes to the lexicon.  

The analysis of allomorphy may be divided 
into three stages: 

1. At first, the linguist may deal just with allo-
morphs and their conditioning environments.  

2. Later, he begins to use phonological rules to 
derive some allomorphs from underlying 
forms, while other allomorphs will still be de-
scribed distributionally. 

3. There may be a third stage in which all allo-
morphs (apart from suppletion) are derived by 
phonological rules.  

Computational tools should support all three 
stages of analysis. Moreover, there are cases 
where allomorphy cannot be plausibly described 
in terms of phonological rules (Carstairs 1990, 
Maxwell 1996); in such a language, the analysis 
can never reach stage (3). 

The Xerox tools are really intended for stage 
(3), i.e. for rule-based allomorphy. Fortunately, 
xfst can handle stages (1) and (2) as well. The 
following sub-sections describe how distribu-
tionally based allomorphy can be described in 
the Xerox system, while section 3.2 describes 
how incremental changes can be handled effi-
ciently. 

Allomorph Environments  

A common notation for allomorph distribution is 
shown in the following example. Suppose we 
have a lexeme meaning ‘dog’ with three disjunc-
tively ordered allomorphs: 

foo  / LEnv1 __ REnv1 
foot / LEnv2 __ REnv2 
fee  / elsewhere 

The disjunctive ordering implies that the second 
allomorph will appear in the environment 
LEnv2__REnv2, except where the environment 
also matches LEnv1__REnv1, in which case 



the first allomorph must appear. The third allo-
morph—the elsewhere case—appears wherever 
neither of the other allomorphs appear. 

In the Xerox system, the lexicon is usually 
stored in lexc files. Stems with different parts of 
speech, or affixes which have different morpho-
tactics, belong to different continuation classes, 
represented as follows:10 

Lexicon <InLexicon> 
  gloss1:form1 <OutLexicon>; 
  gloss2:form2 <OutLexicon>; 
  ...  

But this accounts only for morphotactics; there 
is no provision in the lexc formalism for listing 
the conditioning environments of allomorphs, i.e. 
the phonotactics. Thus, for the lexeme meaning 
‘dog’ in the above example, the allomorphs must 
be listed in the lexc file as follows (assuming for 
illustrative purposes that noun roots are followed 
by suffixes marking number): 

Lexicon NounRoot  
 dog:foo   Number ; 
 dog:foot   Number ; 
 dog:fee   Number ; 
 ... 

The phonological constraints on the allo-
morphs must be represented separately, in an xfst 
file. In order to capture the disjunctive ordering 
implicit in the conceptual notation above, two 
constructs are necessary in xfst: restriction rules, 
and filters. Restriction rules take the form 

<allomorph> => 
     <LeftEnvironment_1> _ 
     <RightEnvironment_1> 

while filters take the form 
~[?* <LeftEnvironment_2> 
     <Allomorph> 
     <RightEnvironment_2> 
  ?*] 

If the left environment of the filter begins with a 
word boundary, or the right environment ends 
with a word boundary, the corresponding ‘?*’ is 
omitted.11 

                                                           

                                                                                       

10 The use of glosses here and elsewhere is for exposi-
tory purposes, since their use results in a much larger 
network than would the use of an underlying form 
which more or less resembles the surface form.  
11 There is a notational shorthand, namely ~$[<left 
environment> <allomorph> <right en-
vironment>], meaning any string containing the 
specified sequence is disallowed. However, this is not 

The allomorph is represented by a string (iden-
tical to the form listed in the lexc file), and the 
left and right environments are regular expres-
sions. Then for the above example, we have the 
following in xfst: 

{foo} => LEnv1 __ REnv1 
  !‘foo’ appears only in  
  ! this environment 
{foot} => LEnv2 __ REnv2  
  !‘foot’ appears only in 
  ! this environment 
~[?* LEnv1 {foot} REnv1 ?*]  
  !…except not in environ  
  ! for ‘foo’ 
!‘fee’ can appear anywhere, 
! except: 
~[?* LEnv1 {fee} REnv1 ?*] 
  !…in environ for ‘foo’ 
~[?* LEnv2 {fee} REnv2 ?*] 
  !…or in environ for ‘foot’ 

(Curly braces are used in an xfst file around a 
string representing a sequence of phonemes; this 
convention is not used in a lexc file.) Note that 
some of these filters may be redundant (if two 
allomorphs have mutually distinct environments 
of occurrence, or if for the third allomorph, not 
being able to occur in the first environment im-
plies not being able to occur in the second envi-
ronment).  But this usually does no harm, apart 
from making compilation a bit slower. 

However, there is a complication: the restric-
tion rules and filters should apply only to entire 
allomorphs, not to pieces. That is, the restriction 
that the allomorph foo appears only in some en-
vironment should not apply to another morpheme 
fool, or indeed to the allomorph foot (should the 
‘t’ be compatible with REnv1). This can be ac-
complished in part by the use of morpheme 
boundary markers around each allomorph. Thus, 
the lexc entries for roots become: 

Lexicon NounRoot  
 dog:#foo#   Number ; 
 dog:#foot#  Number ; 
 dog:#fee#   Number ; 
 ... 

 
usable for the case where the environment mentions a 
word boundary, since word boundaries are not treated 
in xfst as characters. They must instead be represented 
by the absence of a “?*”at the left or right-hand end of 
the environment.  



Lexical entries for infixes, like those for roots, 
would contain a boundary marker to the left and 
right. Since it is only necessary to place a single 
boundary marker on each side of each root and 
affix, it is sufficient to include in the lexicon a 
boundary marker to the left of prefixes and to the 
right of suffixes. The resulting notation is similar 
to that used in SPE (Chomsky and Halle 1968). 
Thus lexical entries for a prefix and a suffix 
would look like this: 

Lexicon NounPrefix  
 REPET:#re   Noun ; 
 ... 
Lexicon NounSuffix  
 PROG:ing#   # ; 
 ... 

Regular expressions describing allomorphy 
constraints on the above roots in xfst are then: 

{#foo#} => LEnv1 __ REnv1 ; 
..!Allomorph ‘foo’ appears 
  ! only in this environment 
{#foot#} => LEnv2 __ REnv2; 
  !Alomorph ‘foot’ appears 
  ! only in this environment 
~[?* LEnv1 {#foot#} REnv1 
  ?*]; 
  !…but not in environment  
  ! for ‘foo’ 
!Alomorph ’fee’ can appear 
! anywhere, except: 
~[?* LEnv1 {#fee#} REnv1  
  ?*] 
  !…in environ for ‘foo’… 
~[?* LEnv2 {#fee#} REnv2 
  ?*] 
  !…or in environ for ‘foot’ 

The regular expressions for affixes would be 
similar, referring to the boundary marker on both 
sides (one of which belongs to the affix, and one 
to the adjacent morpheme). 

An additional xfst rule erases the boundary 
markers at the end of the derivation: 

# → 0 ; 

Homographic Allomorphs 

Things get still more complicated. Suppose there 
are two (or more) lexemes with (at least) one 
homographic allomorph between them, but 
where the allomorphs of the two lexemes have 
different phonological restrictions (whether cor-
rectly, or as an artifact of analysis). It then be-

comes necessary to distinguish homographic 
allomorphs. Unfortunately, the gloss given in the 
lexc lexicon file is invisible to xfst rules. Fortu-
nately, it is possible to tag the forms in lexc with 
diacritics which are visible to xfst. The sample 
lexc lexicon file would look like this, where I 
have added a verb allomorph which is homo-
graphic to the noun allomorph foo: 

Multichar_Symbols  +Sg +Pl 
   %^H1 %^H2 
Lexicon Root 
 NounRoot; 
 VerbRoot;  
Lexicon NounRoot 
 dog:foo%^H1 NounSuffix; 
 dog:fee     NounSuffix; 
Lexicon VerbRoot 
 run:foo%^H2 VerbSuffix; 
 run:fum     VerbSuffix; 

The diacritic tags ^H1 and ^H2 distinguish the 
allomorphs of the two morphemes. The follow-
ing regular expressions implement the distinct 
phonological conditions on the allomorphs: 

{foo}%^H1 => 
  LEnv1/Flags __ REnv1/Flags 
  ~[?* LEnv1/Flags {fee} 
       REnv1/Flags ?*] 
{foo}%^H2 => 
  LEnv2/Flags __ Renv2/Flags 
  ~[?* LEnv2/Flags {fum} 
       REnv2/Flags ?*] 

The added ‘/ Flags’ means that the regular 
immediately preceding expression may contain 
any number of ‘Flags’ (a constant defined to in-
clude all homograph tags). A final rule deletes 
the tags once they have done their job. 

The use of homograph flags requires keeping 
track of homographs in the lexicon. Allomorphs 
which do not have homographs do not need 
flags, but it may be simpler to assign flags to all 
allomorphs, so that it does not become necessary 
to add a flag to an existing allomorph when a 
new homographic allomorph is added. Note that 
homograph flags can be re-used, e.g. if there 
were no homographs in the entire lexicon, all 
allomorphs could use the same flag. 

4 Additions and Deletions 

In the process of glossing text, a user will inevi-
tably encounter new morphemes, and new allo-
morphs of morphemes. Ideally, these should be 



added to the lexicon immediately, since if they 
appear in a particular text, there is a good chance 
they will appear more than once in that text. The 
implication is that addition of morphemes must 
be reasonably fast.  

The user may also decide that previous deci-
sions about morphemes are incorrect—either a 
morpheme does not exist, or (more likely), a pre-
viously added morpheme must be changed. 

The obvious way to add, delete or change 
morphemes is to re-compile the entire lexicon. In 
the early stages of analysis, new morphemes are 
likely to be discovered frequently. But because 
the lexicon is small at this stage, recompilation 
will generally be fast. As the lexicon grows, 
however, while the need for adding new lexemes 
presumably decreases, recompilation becomes 
slower and more memory intensive. At some 
point, recompilation may become impractically 
slow, particularly if there are significant con-
straints among morphemes. 

Timing and memory usage during 
(re-)compilation can be adversely affected if a 
large number of morphosyntactic constraints be-
tween morphemes are incorporated into the finite 
state grammar, particularly if these involve con-
straints between prefixes and suffixes. An alter-
native approach is to check morphosyntactic 
constraints at run time, e.g. by using a more tra-
ditional parser to build structure and check fea-
ture constraints over the morphemes that the 
finite state transducer finds, or by using the dia-
critic flag technique of the Xerox tools. How-
ever, I will only be considering morphotactics 
here, not morphosyntax.  

Incremental Addition of Morphemes 

When a new morpheme (or allomorph) is added, 
allomorphy constraints and phonological rules 
are often the limiting factor to rapid recompila-
tion, since the allomorphs which can appear to 
the right or left of the new morpheme must be 
determined. As analysis progresses, a growing 
proportion of new morphemes will be roots, 
rather than affixes. This turns out to be fortunate: 
apart from compounding and incorporation, what 
appears to the left and right of a root is affixes, 
and natural languages have more roots than af-
fixes. The addition of roots therefore involves 
fewer changes to existing morphemes in the lexi-
con than does the addition of affixes. 

Morphotactics of Additions 

As mentioned above, recompilation of the lexi-
con as each new morpheme is added can be un-
acceptably slow. Fortunately, recompilation of 
the entire lexicon can be avoided by including a 
variable in each continuation class in the lexicon 
file. These variables act as place holders where 
new morphemes can be added, as in the follow-
ing excerpt from a lexc file: 

Multichar_Symbols 
  +NounRoot #MoreNs 
Lexicon +NounRoot  
   fox:zorro   #; 
   #MoreNs     #; 

The place-holding variable here is ‘#MoreNs’. 
The following xfst code can then be used to add 
a new noun, with two allomorphs, to the com-
piled version of the above file. (Homographs will 
be treated below.) 

/*First splice in the  
  allomorphs:*/ 
define ADD [ 
     {dog}:{sin} 
    |{dog}:{sim} 
    | %#MoreNs]; 
substitute defined ADD for 
      %#MoreNs; 
/*…then define their 
 phonological constraints:*/ 
read regex {sim} => 
       _ BilabialC ; 
read regex  
 ~[?* {sin} BilabialC ?* ]; 
compose net; 

The place-holding variable appears again at the 
end of the ‘or’ list in the ‘define’ line, so that it 
can be used for further additions of noun roots.  

Allomorphy of Additions 

The use of the place-holding variables in the lexc 
file adds a complication to the allomorphy state-
ments: until an actual morpheme (that is, an al-
lomorph) is spliced into the network in place of 
the variable, we don’t know what allomorphs it 
can appear with. For example, if we were analyz-
ing English and wanted to splice in new adjec-
tives, we would not know in advance what 
allomorph of the in- prefix they would take. 
Therefore the constraints on in- must be re-
applied after each new adjective is added. 



In more detail: the xfst statements for the Eng-
lish in- prefix might look like this: 

define ContSym 
  ["#MoreADJs”  
  |"#MoreNs”  
  ]; 
define HomNumbers 
   [%^H1|%^H2]; 
read regex {#il#}%^H1 => 
  _ [ l /HomNumbers 
    |ContSym] ; 
read regex {#ir#}%^H1 => 
  _ [ r /HomNumbers 
    |ContSym]; 
read regex {#im#}%^H1 => 
  _ [[Labial]/HomNumbers 
    | ContSym]; 
read regex 
  ~[[ ?* {#in#}%^H1 l 
    ?*]/HomNumbers]; 
read regex 
  ~[[ ?*  {#in#}%^H1 r 
    ?*  ]/HomNumbers]; 
read regex  
  ~[[ ?*  {#in#}%^H1  
  [Labial]?*]/HomNumbers]; 

This allows the il- allomorph to appear before an 
l, or before any place-holding variable, and simi-
larly for the other allomorphs. 

When a real morpheme (or allomorph) is 
added, the constraints on allomorphs of co-
occurring morphemes must be imposed. For ex-
ample, on adding the root possible, it is neces-
sary to ensure that only the im- allomorph 
appears with it. Since phonological processes 
such can apply over long distances, this could 
mean the potentially time consuming application 
of all the constraints to the entire lexicon. 

Speeding up this process of adding a new 
morpheme involves the following steps:  

1. Selecting the subset of morphemes which can 
co-occur with the new morpheme; 

2. Adding the new morpheme to that subset to 
create a mini-lexicon; 

3. Imposing the constraints on just the mini-
lexicon; and 

4. Merging the mini-lexicon back in. 

Fortunately, these steps are each fast. 

Given that derivational affixes can change the 
part of speech of the word, it might seem that we 
could not know in advance which morphemes 
can co-occur with a given stem (step (1)). How-
ever, the grammar itself can tell us this. We first 
tell xfst to create a network containing only 
placeholder variables. If ContSym is a variable 
bound to a list of the continuation placeholders, 
and Lex is bound to the current lexicon, then the 
following commands  

read regex 
   ContSym+ .o. Lex ; 
define PlaceHoldersOnly; 

will result in such a network, i.e. “words” con-
sisting only of placeholders.  

We then eliminate all paths except those not 
containing the class of the morpheme to be 
added. For example, the following command 
would display ‘words’ containing noun roots: 

read regex [?* “#MoreNs” ?*]  
  .o.  
  PlaceHoldersOnly; 

Applying this to a network for a hypothetical 
agglutinative language marking case, gender and 
number as suffixes on nouns, the command 
‘print words’ might output the following:12 

#MoreNs 
#MoreNs#MoreNUM 
#MoreNs#MoreGENDER 
#MoreNs#MORE- 
   GENDER#MoreNUM 
#MoreNs#MoreCASE 
#MoreNs#MORE- 
   CASE#MoreNUM 
#MoreNs#MORE- 
   CASE#MoreGENDER 
#MoreNs#MoreCASE#More- 
   GENDER#MoreNUM 

Next, we eliminate the instances of the given 
class, unless words of this class can co-occur 
with themselves. For example, to see the words 
which co-occur with noun roots, we eliminate the 
noun root placeholder itself, unless the language 
allows compound nouns. The following com-

                                                           
12 The set of words can be cyclic, e.g. a nominalizer 
can attach to a verb, followed by the attachment of a 
verbalizer. Fortunately, print words is smart 
enough to output a finite list of words. As will be seen 
in a moment, the result is still sufficient to capture all 
co-occurring morpheme classes. 



mand does this, deleting the first instance of 
“#MoreNs” in each word: 

read regex  
 RestrictedPlaceholders 
 .o. 
 [“#MoreNs” -> 0 || 
   .#. [?-“#MoreNs”]*_]; 

Applied to the above output, this gives: 
#MoreNUM 
#MoreGENDER 
#MoreGENDER#MoreNUM 
#MoreCASE 
#MoreCASE#MoreNUM 
#MoreCASE#MoreGENDER 
#MoreCASE#MoreGENDER#MoreNUM 

Finally, the following command prints out one 
instance of each placeholder which can co-occur 
with the specified class: 

print labels; 
Given the above sample data, this outputs: 

#MoreGENDER 
#MoreCASE 
#MoreNUM 

The above steps can be done in a single xfst 
command, without intermediate variables. 

Once the grammar has told us which mor-
phemes co-occur with a given morpheme, there 
are three ways to reduce what needs to be com-
puted on adding a new morpheme:  

1. Reduce the number of morphemes whose al-
lomorphy co-occurrence constraints need to 
be checked against a new morpheme.  

2. Reduce the number of allomorphy constraints 
that need to be checked. 

3. Reduce the application of phonological rules. 

I will consider these points in turn. 
Point (1) results straightforwardly from know-

ing the classes of morphemes which can (mor-
phosyntactically and morphotactically) co-occur 
with the new morpheme. The relevant classes 
can be stored in un-compiled or semi-compiled 
form, to be used as needed.  

Point (2) implies that we can extract the subset 
of allomorphy constraints relevant to a particular 
morpheme class. Recall that morphemes and 
their classes are defined in lexc files, while allo-
morphy constraints are given in xfst files. How-
ever, if both are extracted from a dictionary in 

some other form (such as an XML file), filtering 
constraints by class is straightforward. 

As for point (3), in most cases it is not possi-
ble to reduce the number of phonological rules 
which need to be applied, since phonological 
rules by definition apply without regard to indi-
vidual morphemes (apart from strata or excep-
tional rule marking). However, the techniques 
described above reduce the number of mor-
phemes to which those rules must be re-applied. 
That is, the phonological rules need only be ap-
plied to the underlying forms of words resulting 
from the known small set of morphemes selected 
under point (1) above. 

A further complexity arises when a new allo-
morph is added to a morpheme already in the 
lexicon; this situation will be addressed below. 

Summarizing thus far, the addition of new 
morphemes can be sped up by determining 
which morphemes can co-occur with the new 
morpheme. Just those morphemes are then com-
bined with the new morpheme to create a mini-
lexicon, to which the appropriate constraints and 
(all) phonological rules can be applied. The re-
sulting lexicon is then unioned back in with the 
main lexicon, a fast operation.  

Both the time and memory needed for naïve 
additions, and the savings in time and memory 
obtained by the methodology outlined here, de-
pend heavily on the size of the lexicon, and even 
more so on the nature of the grammar constraints 
and rules in a particular language. Hence it 
would be fruitless to give exact numbers here. 
Suffice to say that With substantial lexicons, the 
process of incremental additions described here 
can be an order of magnitude faster than recom-
piling the entire lexicon, as shown by tests with 
sample data. (The lexicons tested were in the 
range of several thousand morphemes.) But since 
the constraints operative in a particular language 
are generally unknown in advance, the method-
ology described here results in significant sav-
ings in time and memory. 

Incrementally Deleting a Morpheme 

Deleting a morpheme is straightforward. The 
following xfst command removes the morpheme 
glossed ‘dog’ (and all its allomorphs) from a 
lexicon bound to the variable LEX: 

read regex 
  ~$[{dog}] .o. LEX; 



Incrementally Changing Allomorphs 

Returning now to the issue of modifying the al-
lomorphs of an already loaded morpheme: this 
can be done by first deleting the morpheme, tak-
ing with it all its existing allomorphs, and then 
adding the morpheme and both its old and new 
allomorphs and constraints back in. The reason 
for deleting the old allomorphs is that some of 
them may be restricted to not occur in the envi-
ronment of the new allomorph. If the new allo-
morph were simply added in without changing 
the old allomorphs, there might (incorrectly) be 
environments where both allomorphs could oc-
cur. Removing the old allomorphs prevents this. 

The deletion of the existing morpheme must of 
course be done to the entire lexicon, but this is 
fast; the addition of the new morpheme, with all 
its allomorphs, is done as described earlier. 

5 Conclusion 

The Xerox Finite State tools are optimized for 
run-time efficiency, which can conflict with a 
field linguist’s need for compile-time efficiency. 
I have described a work-around which allows 
rapid incremental changes. The work-around 
consists of extracting the set of morphemes 
which can co-occur with a given morpheme, im-
posing constraints and rules on only that subset 
plus the new morpheme, then adding the con-
strained subset back into the larger lexicon. This 
also allows the rapid deletion and modification 
of existing morphemes and their allomorphs. 
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