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Abstract

We present a two-stage multilingual de-
pendency parser and evaluate it on 13
diverse languages. The first stage is
based on the unlabeled dependency pars-
ing models described by McDonald and
Pereira (2006) augmented with morpho-
logical features for a subset of the lan-
guages. The second stage takes the out-
put from the first and labels all the edges
in the dependency graph with appropri-
ate syntactic categories using a globally
trained sequence classifier over compo-
nents of the graph. We report results on
the CoNLL-X shared task (Buchholz et
al., 2006) data sets and present an error
analysis.

ability to easily model non-projectivity in freer-word
order languages. Nivre (2005) gives an introduction
to dependency representations of sentences and re-
cent developments in dependency parsing strategies.

Dependency graphs also encode much of the deep
syntactic information needed for further process-
ing. This has been shown through their success-
ful use in many standard natural language process-
ing tasks, including machine translation (Ding and
Palmer, 2005), sentence compression (McDonald,
2006), and textual inference (Haghighi et al., 2005).

In this paper we describe a two-stage discrimi-
native parsing approach consisting of an unlabeled
parser and a subsequent edge labeler. We evaluate
this parser on a diverse set of 13 languages using
data provided by the CoNLL-X shared-task organiz-
ers (Buchholz et al., 2006; Haji¢ et al., 2004; Simov
et al., 2005; Simov and Osenova, 2003; Chen et al.,

2003; Bohmova et al., 2003; Kromann, 2003; van
der Beek et al., 2002; Brants et al., 2002; Kawata
and Bartels, 2000; Afonso et al., 2002; DZeroski et
Often in language processing we require a deep SyﬂL, 2006; Civit Torruella and Marti Antonin, 2002;
tactic representation of a sentence in order to asshdilsson et al., 2005; Oflazer et al., 2003; Atalay et
further processing. With the availability of resourcedl., 2003). The results are promising and show the
such as the Penn WSJ Treebank, much of the féanguage independence of our system under the as-
cus in the parsing community had been on producingumption of a labeled dependency corpus in the tar-
syntactic representations based on phrase-structu@gt language.

However, recently their has been a revived interest For the remainder of this paper, we denote by
in parsing models that produce dependency graph = z1,...z, a sentence wittln words and by
representations of sentences, which model wordg a corresponding dependency graph. A depen-
and their arguments through directed edges (Hudlency graph is represented by a set of ordered pairs
son, 1984; MéEuk, 1988). This interest has gener-(i, j) € y in which z; is a dependent ang; is the

ally come about due to the computationally efficientorresponding head. Each edge can be assigned a la-
and flexible nature of dependency graphs and thetrel /(; ;) from a finite setl. of predefined labels. We

1 Introduction



assume that all dependency graphs are trees but n@gyticular label; ;. Ideally one would like to make
be non-projective, both of which are true in the datall parsing and labeling decisions jointly so that the

sets we use. shared knowledge of both decisions will help resolve
. any ambiguities. However, the parser is fundamen-
2 Stage 1: Unlabeled Parsing tally limited by the scope of local factorizations that

é“aake inference tractable. In our case this means
we are forced only to consider features over single
8dges or pairs of edges. However, in a two stage

The first stage of our system creates an unlabel
parsey for an input sentence:. This system is
primarily based on the parsing models describe . -
. system we can incorporate features over the entire
by McDonald and Pereira (2006). That work ex- . i
: : gutput of the unlabeled parser since that structure is
tends the maximum spanning tree dependency parﬁsied as input. The simplest labeler would be to take
ing framework (McDonald et al., 2005a; McDonald put. P

et al., 2005b) to incorporate features over multipl(%S '?prtlan.tﬁdhgelr;j ) te y for sentencer and find
edges in the dependency graph. An exact projec-e abelwith highest score,
tive and an approximate non-projective parsing al- lij) = argmax s(l, (4,5),y, ©)

gorithm are presented, since it is shown that non- !

projective dependency parsing becomes NP-hafdoing this for each edge in the tree would pro-
when features are extended beyond a single edge.duce the final output. Such a model could easily be

That system uses MIRA, an online large-margirirained using the provided training data for each lan-
learning algorithm, to compute model parameterguage. However, it might be advantageous to know
Its power lies in the ability to define a rich set of feathe labels of other nearby edges. For instance, if we
tures over parsing decisions, as well as surface levepnsider a head; with dependents;, , ..., z;,,, it
features relative to these decisions. For instance, tieoften the case that many of these dependencies
system of McDonald et al. (2005a) incorporates feawill have correlated labels. To model this we treat
tures over the part of speech of words occurring béhe labeling of the edges, ji1), ..., (i, jar) as a se-
tween and around a possible head-dependent refisence labeling problem,
tion. These features are highly important to over- T T

. I ) = (gyys -5 laga)) =1 = argmax s(l,4,y, )
all accuracy since they eliminate unlikely scenarios i
su_ch as a preposition quifying a noun_not directl)(Ne use a first-order Markov factorization of the
to its left, or a noun modifying a verb with anotherSCore
verb occurring between them.

We augmented this model to incorporate morpho-
logical features derived from each token. Consider a
proposed dependency of a dependgnbn the head
x;, each with morphological featuréd; and\/; re-
spectively. We then add to the representation of t
edge: M; as head features)/; as dependent fea-
tures, and also each conjunction of a feature fro T o
both sets. These features play the obvious role gHages and tralnlng became S|gr?|f|cantly slower.
explicitly modeling consistencies and commonali- For score func_tlons,_we use simple dot prodgcts
ties between a head and its dependents in terms %(?tween .hlgh dimensional feature representations
attributes like gender, case, or number. Not all dat%nd a weight vector
sets in our experiments include morphological fea-
tures, so we use them only when available.

M
[ =arg max Z S(Z(i,jm), l(i,jm,l)yia%m)
! m=2

in which each factor is the score of labeling the adja-
Heent edges$i, j,,) and(i, j,,—1) in the treey. We at-
tempted higher-order Markov factorizations but they
rﬂid not improve performance uniformly across lan-

S(Z(i,jm)vl(i,jm,1)>i7y>m) = .
w- f(l(7‘7-7m)7 l(iyjrnfl)7 Z? y? m)

3 Stage 2: Label Classification _ _
Assuming we have an appropriate feature repre-

The second stage takes the output payder sen- sentation, we can find the highest scoring label se-
tencex and classifies each eddg j) € y with a quence with Viterbi’s algorithm. We use the MIRA



online learner to set the weights (Crammer and DATA SET UA LA

Singer, 2003; McDonald et al., 2005a) since we ARABIC 79.3 66.9
found it trained quickly and provide good perfor- BULGARIAN  92.0  87.6
quickly P good p CHINESE 91.1 85.9
mance. Furthermore, it made the system homoge- CzECH 87.3 80.2
neous in terms of learning algorithms since that is DANISH 90.6 84.8
. . DuTcCH 83.6 79.2
what is used to train our unlabeled parser (McDon- GERMAN 904 873
ald and Pereira, 2006). Of course, we have to define JAPANESE 92.8 90.7
a set of suitable features. We used the following: PORTUGUESE 91.4 86.8
SLOVENE 83.2 73.4
i SPANISH 86.1 82.3
e Edge Features: Word/pre-suffix/part-of-speech SWEDISH 88.9 825
(POS)/morphological feature identity of the head and the TURKISH 747 63.2
dependent (affix lengths 2 and 3). Does the head and its
AVERAGE 87.0 80.8

dependent share a prefix/suffix? Attachment direction.
What morphological features do head and dependent
have the same value for? Is the dependent the firstlad@ble 1: Dependency accuracy on 13 languages.

word in the sentence? Unlabeled (UA) and Labeled Accuracy (LA).

e Sibling Features: Word/POS/pre-suffix/morphological fqrms again based on performance on held-out
feature identity of the dependent’s nearest left/right sib ’

lings in the tree (siblings are words with same parent irqatd'-
the tree). Do any of the dependent’s siblings share its Results on the test set are given in Table 1. Per-

POS? formance is measured through unlabeled accuracy,
e Context Features:POS tag of each intervening word be-WhICh is the Percentage of words that modify the
tween head and dependent. Do any of the words betwe@orrect head in the dependency graph, and labeled

the head and the dependent have a parent other than i i
head? Are any of the words between the head and the d%gcuracy’ which is the percentage of words that

pendent not a descendant of the head (i.e. non-projectif®0dify the correct headnd label the dependency

edge)? edge correctly in the graph. These results show that
the discriminative spanning tree parsing framework

- : i 2 .
e Non-local: How many children does the dependent haveg\/ICDonald et al., 2005b; McDonald and Pereira,

What morphological features do the grandparent and th : i
dependent have identical values? Is this the left/right2006) is easily adapted across all these languages.
most dependent for the head? Is this the first depende@my Arabic, Turkish and Slovene have parsing ac-
to the left/right of the head? . o
curacies significantly below 80%, and these lan-
uages have relatively small training sets and/or are
CEi[ghly inflected with little to no word order con-

based on performance on held-out data. Note thar” . ts. Furth h its show that a t
many of these features are beyond the scope of tﬁgam S. FUrthermore, these results snow that a two-
age system can achieve a relatively high perfor-

edge based factorizations of the unlabeled parsgtt. In fact. f | del
Thus a joint model of parsing and labeling could no ance. 1n 1act, Ior every language our models per
orm significantly higher than the average perfor-

easily include them without some form of re-rankin .
or approximate parameter estimation. mance for all the systems reported in Buchholz et
al. (2006).

For the remainder of the paper we provide a gen-
eral error analysis across a wide set of languages
We trained models for all 13 languages providegblus a detailed error analysis of Spanish and Arabic.
by the CoNLL organizers (Buchholz et al., 2006). _

Based on performance from a held-out section of tne  General Error Analysis

training data, we used non-projective parsing algqyr system has several components, including the

rithms for Czech, Danish, Dutch, German, Japanesgyjir to produce non-projective edges, sequential
Portuguese and Slovene, and projective parsing al-

gorithms for Arabic, Bulgarian, Chinese, Spanish, 'Using the non-projective parser for all languages does not

. . . ffect performance significantly. Similarly, using the @dted
Swedish and Turkish. Furthermore, for Arabic an ord form instead of the lemma for all languages does not

Spanish, we used lemmas instead of inflected wokghange performance significantly.

Various conjunctions of these were include

4 Results



SysTEM UA LA objects from81.7%/75.6% to 84.2%/81.3% (la-

N+§+M 886-36’5 79.7 beled precision/recall) and the labeling of subjects
,F\]:S:'\é' 8;_'5 ;g:g from 86._8%/88.2% t0 90.5%/90.4% for Swedish.

N+A+M 86.3 79.4 Similar improvements are common across all lan-
P+A+B 848 77.7 guages, though not as dramatic. Even with this im-

. . \Provement, the labeling of verb dependents remains
Table 2: Error analysis of parser components av: | .
the highest source of error.

eraged over Arabic, Bulgarian, Danish, Dutch,
Japanese, Portuguese, Slovene, Spanish, Swedésh
and Turkish. N/P: Allow non-projective/Force pro-

jective, S/A: Sequential labeling/Atomic labeling,6.1 Spanish

fl\gﬁl:lrlgglude morphology features/No morIOhOIogyAIthough overall unlabeled accuracy $6§%, most

verbs and some conjunctions attach to their head
assignment of edge labels instead of individual asvords with much lower accuracy69% for main
signment, and a rich feature set that incorporategerbs, 75% for the verbser, and 65% for coor-
morphological properties when available. The benedinating conjunctions. These words forti% of
fit of each of these is shown in Table 2. These resulthe test corpus. Other high-frequency word classes
report the average labeled and unlabeled precisiovith relatively low attachment accuracy are preposi-
for the 10 languages with the smallest training setsions 80%), adverbs §2%) and subordinating con-
This allowed us to train new models quickly. junctions 80%), for a total of anothe3% of the

Table 2 shows that each component of our systeffist corpus. These weaknesses are not surprising,
does not change performance significantly (rows &ince these decisions encode the more global as-
4 versus row 1). However, if we only allow projec-Pects of sentence structure: arrangement of clauses
tive parses, do not use morphological features arfhd adverbial dependents in multi-clause sentences,
label edges with a simple atomic classifier, the ove@nd prepositional phrase attachment. In a prelimi-
all drop in performance becomes significant (rowary test of this hypothesis, we looked at all of the
5 versus row 1). Allowing non-projective parsessentences from a development set in which a main
helped with freer word order languages like Dutclyerb is incorrectly attached. We confirmed that the
(78.8%/74.7% to 83.6%/79.2%, unlabeled/labeled Main clause is often misidentified in multi-clause
accuracy). Including rich morphology features natusentences, or that one of several conjoined clauses
rally helped with highly inflected languages, in pards incorrectly taken as the main clause. To test this
ticular Spanish, Arabic, Turkish, Slovene and to &urther, we added features to count the number of
lesser extent Dutch and Portuguese. Derived mogommas and conjunctions between a dependent verb
phological features improved accuracy in all thes@nd its candidate head. Unlabeled accuracy for all
languages by 1-3% absolute. verbs increases froml% to 73% and for all con-

Sequential classification of labels had very litfunctions from71% to 74%. Unfortunately, accu-
tle effect on overall labeled accuracy9(4% to 'acy for other word types decreases somewhat, re-
79.7%)2. The major contribution was in helping to sulting in no_agmﬂcant_ngt accuracy_change. Nev-
distinguish subjects, objects and other dependerff§eless, this very preliminary experiment suggests
of main verbs, which is the most common lapelthat wider-range features may be useful in improv-
ing error. This is not surprising since these edg'glg the recognition of overall sentence structure.
labels typically are the most correlated (i.e., if you Another common verb attachment error is a
already know which noun dependent is the subjec?,WitCh between head and dependent verb in phrasal
then it should be easy to find the object). For inverb forms likedejan intrigar or giero decir, possi-

stance, sequential labeling improves the labeling &y because the non-finite verb in these cases is often
a main verb in training sentences. We need to look

2This difference was much larger for experiments in whichmore _Carefu_"y at verb features _th‘?t m_ay b_e_usefm
gold standard unlabeled dependencies are used. here, in particular features that distinguish finite and

Detailed Analysis



non-finite forms. al. (McDonald et al., 2005b; McDonald and Pereira,
In doing this preliminary analysis, we noticed2006) generalizes well to languages other than En-
some inconsistencies in the reference dependenglsh. In the future we plan to extend these mod-
structures. For example, in the test sentehoe els in two ways. First, we plan on examining the
gue decia Mae West de si misma gdadnos decirlo performance difference between two-staged depen-
tambén los hombres:..decids head is given ade- dency parsing (as presented here) and joint parsing
cirlo, although the main verbs of relative clauses arplus labeling. It is our hypothesis that for languages
normally dependent on what the relative modifies, imwith fine-grained label sets, joint parsing and label-
this case the articleo. ing will improve performance. Second, we plan on
) integrating any available morphological features in
6.2 Arabic a more principled manner. The current system sim-
A quick look at unlabeled attachment accuracies irply includes all morphological bi-gram features. It
dicate that errors in Arabic parsing are the moss our hope that a better morphological feature set
common across all languages: prepositiod®)(), will help with both unlabeled parsing and labeling
conjunctions §9%) and to a lesser extent verbsfor highly inflected languages.
(73%). Similarly, for labeled accuracy, the hard-
est edges to label are for dependents of verbs, i.e.,
subjects, objects and adverbials. Note the diffelReferences
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