New Methods for Constructing Annotated Speech Corpora

Steven Bird

Linguistic Signals

- Broadcast news: USC Marketplace
 NIST CSR EVAL
- Helicopter: Out of Fuel
 AFRL/DAU
- Telephone: Callhome
 LVCSR

Dialect variation:
1. New England
2. Northern
3. North Midland
4. South Midland
5. Southern
6. New York City
7. Western
8. Army Brat

Time-series record of a linguistic "performance"

Audio Signals

- Pitch
- Spectrogram
- Derived Signals

Physiological Signals

- EPG: Electropalatograph
- Video of EPG data

Artificial palate: 96 electrodes measure tongue contact
Other Kinds of Signal

- Video
 - e.g. studies of classroom interaction, gesture, sign
- Microphone arrays
 - e.g. for recording meetings
- Hydrophone arrays
 - e.g. studies of whale communication
- fMRI
 - e.g. studies of neural activity during linguistic performace
- Combinations

Language Science...

DATA INTENSIVE:
- >6 billion language speakers
- hundreds of utterances per day
- in ~6800+ languages
- with 10-100,000 word vocabularies

LINGUISTIC DATABASES:
- A digital repository of structured information intended to document natural language and natural communicative interaction
 - bilingual dictionary
 - collection of audio recordings with transcription and demographic data
 - linguistic field notes

Data Collection: Lab & Field

Linguistic Annotation

Associates structured symbolic information with a region of a linguistic signal
Example: Vowel Analysis

With a set of annotations we can analyze the corresponding regions of signal.

Comparing two vowels in the F1-F2 vowel space.

How do discrete linguistic categories relate to continuous acoustic parameters?

Research Questions / Methodology

- How do animals use sound to communicate?
- What is the relationship between vocal communication and:
 - ecology?
 - social behavior?
- Methodology:
 - Record known individuals
 - Add detailed commentary on social events
 - Formulate hypotheses about how calls affect behavior
 - Test hypotheses using playback experiments

Example: Animal Communication

- Meerkat recording by Marta Manser, South Africa

 - Field trip to South Africa in 2000
 - 80 hours of digital audio
 - >20,000 annotations

Ethology Annotation Tool

Bird: LDC - 2002-06-14
Linguistic Databases in Language Technology R&D

- automatic speech recognition (ASR)
- machine translation
- text retrieval
- message understanding
- language teaching

"The evolution of ASR systems has been strictly related to the availability of large corpora of speech and the current systems achieve optimal performances only if proper databases are used."
- Becchetti & Ricotti 1999

Example of a Linguistic DB: TIMIT

Name: TIMIT = TI + MIT
- the first annotated speech database

Research questions and methodologies:
- What acoustic properties of speech are invariant across speakers of different dialects?
- Build ASR systems and evaluate performance
- How is the same phoneme realized differently in different contexts, by different speakers?
- Build parametric models of timing and co-articulation to account for the variation

Contents:
- 6300 phonetically transcribed recordings
- 630 speakers, 8 US dialects/regions

TIMIT Annotation

<table>
<thead>
<tr>
<th>WORDS</th>
<th>PHONEMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2360 5200 she</td>
<td>0 2360 h#</td>
</tr>
<tr>
<td>5200 9680 had</td>
<td>2360 3720 sh</td>
</tr>
<tr>
<td>9680 11077 your</td>
<td>3720 5200 iy</td>
</tr>
<tr>
<td>11077 16626 dark</td>
<td>5200 6160 hv</td>
</tr>
<tr>
<td>16626 22179 suit</td>
<td>6160 8720 ae</td>
</tr>
<tr>
<td>22179 24400 in</td>
<td>8720 9680 dcl</td>
</tr>
<tr>
<td>24400 30161 greasy</td>
<td>9680 10173 y</td>
</tr>
<tr>
<td>30161 36150 wash</td>
<td>10173 11077 axr</td>
</tr>
<tr>
<td>36720 41839 water</td>
<td>11077 12019 dcl</td>
</tr>
<tr>
<td>41839 44680 all</td>
<td>12019 12257 d</td>
</tr>
<tr>
<td>44680 49066 year</td>
<td>...</td>
</tr>
</tbody>
</table>

TIMIT: Structure

```
5200 6160 8720 9680

had

5200 9680 had
```

```
5200 6160
```

```
6160 8720
```

```
8720 9680
```

```
dcl
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
Phonetic Queries

- Find all instances of the phonetic segment "a"
- Find words whose phonetic transcription contains a "d" and ends with a "k"
- Find phonetic segments which immediately precede a vowel that overlaps a high tone

Another Example: Switchboard

Corpus of 2400 telephone conversations
Originally transcribed on three levels:
 - conversation, speaker turn, word
Subsequently annotated for:
 - syntactic structure
 - breath groups and disfluencies
 - speech acts
 - phonetic segments
Features:
 - proliferation of layers with different tokenizations

SWB: Example

B.22: Yeah, / no one seems to be adopting it. /
 Metric system, [no one's very, + {F uh, } no one
 wants] it at all seems like. /

(1)
 (NP-TPC Metric system),
 (S-TPC-1 (EDITED (RM I))
 (S (NP-SBJ no one)
 (VP 's (ADJP-PRD-UNF very))),
 (IP +))
 (INTJ uh),
 (NP-SBJ no one)
 (VP wants (ADVP at all)))
 (NP-SBJ +)
 (VP seems)
 (SBAR like (S +T*=-1))) . E_S))

Switchboard: Example

B 21.86 0.26 Metric
B 22.12 0.26 system,
B 22.38 0.18 no
B 22.56 0.06 one's
B 22.86 0.32 very,
B 23.88 0.14 uh,
B 24.02 0.16 no
B 24.18 0.32 one
B 24.52 0.28 wants
B 24.80 0.06 it
B 24.86 0.12 at
B 24.98 0.22 all
B 25.66 0.22 seems
B 25.88 0.22 like.

[Metric/JJ system/NN]
[no/DT one/NN]
['s/BES
 very/RB ,/]
[uh/UH] ,/]
[no/DT one/NN
 wants/VBZ
 [it/PRP]
 at/IN
 [all/DT]
 seems/VBZ
 like/IN ./]
Learn more...

- Graff & Bird
 Many uses, many annotations for large speech corpora: Switchboard and TDT as case studies
 LREC 2000
 http://arxiv.org/abs/cs/0007024

SWB: queries

- To what extent do disfluencies and repairs respect syntactic structure?
- To what extent can prosodic phrasing be predicted by syntactic structure?
- ...

Aside: Intersecting Hierarchies

Syntactic and prosodic hierarchies intersect at the word level

Aside: Intersecting Hierarchies
The tool problem

- formats, user interfaces, coding specs
- in-house tools
 - distribution?
 - facilitation?
- two-level model

Data Modeling Questions

- What is the model?
- Shopping list:
 - intervals and instants
 - sequential and parallel organization
- hierarchy:
 - cross-cutting hierarchies
 - partial hierarchies

AG: Annotation

```
Ann1: <l1,l2,...,ln>
```

Relational representation in 3 tables:
- anchor, annotation (=arc), feature (=label)

TIMIT: Annotation Graph

```
W = word level
5200 9680 had
P = phoneme level
5200 6160 hv
6160 8720 ae
8720 9680 dcl
```
SWB: Annotation Graph

Disjoint Components

Logically independent events are graphwise disjoint; logically related events are connected.

Learn more...

- Bird & Liberman
 A formal framework for linguistic annotation
 Speech Communication
 http://arxiv.org/abs/cs/0010033

TableTrans
Learn more...

- Bird, Maeda, Ma, Lee, Randall, and Zayat, TableTrans, MultiTrans, InterTrans and TreeTrans: Diverse Tools Built on the Annotation Graph Toolkit
 LREC 2002
 http://arxiv.org/abs/cs/0204006

- Cotton & Bird, An Integrated Framework for Treebanks and Multilayer Annotations
 LREC 2002
 http://arxiv.org/abs/cs/0204007

- Maeda & Bird, A formal framework for interlinear text
 agtk.sf.net

Research Questions

- Data models and APIs
 - new tasks, e.g. CA, gesture, treebanking, ...
 - what is the structure of the data?
 - what are the well-formed operations?

- Query languages
 - efficient storage, indexing
 - expressive and tractable languages

- Finite state processing
 - alternative to RDBMS, SQL
 - map AGs to FSMs and queries to FSTs

- Reconciling expressiveness with tractability...
Research: further reading...

- Data Models and APIs
 - Maeda & Bird - interlinear text
 - Cotton & Bird - treebank
- Query Languages
 - Bird, Buneman & Tan (LREC 2000)
 - Cassidy & Bird (ADC 2000)
 - Cieri & Bird (ACL 2001)
 - Ma, Lee, Bird & Maeda (LREC 2002)
- Finite State Processing
 - Bird (AAAS 2002)

OLAC: Open Language Archives Community

- resource discovery problem
- metadata
- Dublin Core
- Open Archives Initiative
- Demonstration

The future?

- adopting AG tools in-house
 - learning curve for developers
 - R&D not just D!
 - now is the time to switch...
- publishing corpora with tools
 - documentation
 - roles in an open source initiative
 - on-site training workshops

Future of Talkbank

- 5 year NSF project: 1999-2003
- www.talkbank.org
- phase 1: tools (years 1-3)
- phase 2: data (years 4-5)
 - domains: linguistic exploration, sociolinguistics, gesture, ethology
 - infrastructure: tools, metadata
A vision...

- camera-ready corpora?
 - evolution of print publishers
 - XML, Unicode
 - provide the tools others will use to give us data
- facilitating others
 - training
 - establishing best practices
- research
 - understanding, connections, head-start
 - resource allocation: invention vs re-invention