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Abstract
Background: The rapid proliferation of biomedical text makes it increasingly difficult for
researchers to identify, synthesize, and utilize developed knowledge in their fields of interest.
Automated information extraction procedures can assist in the acquisition and management of this
knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity
recognition of well-defined molecular objects such as genes, but less work has been performed to
identify disease-related objects and concepts. Furthermore, promise has been tempered by an
inability to efficiently scale approaches in ways that minimize manual efforts and still perform with
high accuracy. Here, we have applied a machine-learning approach previously successful for
identifying molecular entities to a disease concept to determine if the underlying probabilistic
model effectively generalizes to unrelated concepts with minimal manual intervention for model
retraining.

Results: We developed a named entity recognizer (MTag), an entity tagger for recognizing clinical
descriptions of malignancy presented in text. The application uses the machine-learning technique
Conditional Random Fields with additional domain-specific features. MTag was tested with 1,010
training and 432 evaluation documents pertaining to cancer genomics. Overall, our experiments
resulted in 0.85 precision, 0.83 recall, and 0.84 F-measure on the evaluation set. Compared with a
baseline system using string matching of text with a neoplasm term list, MTag performed with a
much higher recall rate (92.1% vs. 42.1% recall) and demonstrated the ability to learn new patterns.
Application of MTag to all MEDLINE abstracts yielded the identification of 580,002 unique and
9,153,340 overall mentions of malignancy. Significantly, addition of an extensive lexicon of
malignancy mentions as a feature set for extraction had minimal impact in performance.

Conclusion: Together, these results suggest that the identification of disparate biomedical entity
classes in free text may be achievable with high accuracy and only moderate additional effort for
each new application domain.
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Background
The biomedical literature collectively represents the
acknowledged historical perception of biological and
medical concepts, including findings pertaining to dis-
ease-related research. However, the rapid proliferation of
this information makes it increasingly difficult for
researchers and clinicians to peruse, query, and synthesize
it for biomedical knowledge gain. Automated informa-
tion extraction methods, which have recently been
increasingly concentrated upon biomedical text, can assist
in the acquisition and management of this data. Although
text mining applications have been successful in other
domains and show promise for biomedical information
extraction, issues of scalability impose significant impedi-
ments to broad use in biomedicine. Particular challenges
for text mining include the requirement for highly speci-
fied extractors in order to generate accuracies sufficient for
users; considerable effort by highly trained computer sci-
entists with substantial input by biomedical domain
experts to develop extractors; and a significant body of
manually annotated text – with comparable effort in gen-
erating annotated corpora – for training machine-learning
extractors. In addition, the high number and wide diver-
sity of biomedical entity types, along with the high com-
plexity of biomedical literature, makes auto-annotation of
multiple biomedical entity classes a difficult and labor-
intensive task.

Most biomedical text mining efforts to date have focused
upon molecular object (entity) classes, especially the
identification of gene and protein names. Automated
extractors for these tasks have improved considerably in
the last few years [1-13]. We recently extended this focus
to include genomic variations [14]. Although there have
been efforts to apply automated entity recognition to the
identification of phenotypic and disease objects [15-17],
these systems are broadly focused and often do not per-
form as well as those utilizing more recently-evolved
machine-learning techniques for such tasks as gene/pro-
tein name recognition. Recently, Skounakis and col-
leagues have applied a machine-learning algorithm to
extract gene-disorder relations [18], while van Driel and
co-workers have made attempts to extract phenotypic
attributes from Online Mendelian Inheritance in Man
[19]. However, more extensive work on medical entity
class recognition is necessary because it is an important
prerequisite for utilizing text information to link molecu-
lar and phenotypic observations, thus improving the asso-
ciation between laboratory research and clinical
applications described in the literature.

In the current work, we explore scalability issues relating
to entity extractor generality and development time, and
also determine the feasibility of efficiently capturing dis-
ease descriptions. We first describe an algorithm for auto-

matically recognizing a specific disease entity class:
malignant disease labels. This algorithm, MTag, is based
upon the probability model Conditional Random Fields
(CRFs) that has been shown to perform with state-of-the-
art accuracy for entity extraction tasks [5,14]. CRF extrac-
tors consider a large number of syntactic and semantic fea-
tures of text surrounding each putative mention [20,21].
MTag was trained and evaluated on MEDLINE abstracts
and compared with a baseline vocabulary matching
method. An MTag output format that provides HTML-vis-
ualized markup of malignant mentions was developed.
Finally, we applied MTag to the entire collection of
MEDLINE abstracts to generate an annotated corpus and
an extensive vocabulary of malignancy mentions.

Results
MTag performance
Manually annotated text from a corpus of 1,442
MEDLINE abstracts was used to train and evaluate MTag.
Abstracts were derived from a random sampling of two
domains: articles pertaining to the pediatric tumor neu-
roblastoma and articles describing genomic alterations in
a wide variety of malignancies. Two separate training
experiments were performed, either with or without the
inclusion of malignancy-specific features, which were the
addition of a lexicon of malignancy mentions and a list of
indicative suffixes. In each case, MTag was tested with the
same randomly selected 1,010 training documents and
then evaluated with a separate set of 432 documents per-
taining to cancer genomics. The extractor took approxi-
mately 6 hours to train on a 733 MHz PowerPC G4 with
1 GB SDRAM. Once trained, MTag can annotate a new
abstract in a matter of seconds.

For evaluation purposes, manual annotations were
treated as gold-standard files (assuming 100% annotation
accuracy). We first evaluated the MTag model with all bio-
logical feature sets included. Our experiments resulted in
0.846 precision, 0.831 recall, and 0.838 F-measure on the
evaluation set. Additionally, the two subset corpora (neu-
roblastoma-specific and genome-specific) were tested sep-
arately. As expected, the extractor performed with higher
accuracy with the more narrowly defined corpus (neurob-
lastoma) than with the corpus more representative for var-
ious malignancies (genome-specific). The neuroblastoma
corpus performed with 0.88 precision, 0.87 recall, and
0.88 F-measure, while the genome-specific corpus per-
formed with 0.77 precision, 0.69 recall, and 0.73 F-meas-
ure. These results likely reflect the increased challenge of
identifying mentions of malignancy in a document set
demonstrating a more diverse collection of mentions.

Next, we excluded our biological feature sets from MTag
to create a generic extractor, in order to determine the
impact of these domain-specific features. This extractor
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was then trained and evaluated using the identical set of
files used to train the biological MTag version. Somewhat
surprisingly, the extractor performed with similar accu-
racy with the generic model, resulting in 0.851 precision,
0.818 recall, and 0.834 F-measure on the evaluation set.
These results suggested that at least for this class of enti-
ties, the extractor performs the task of identifying malig-
nancy mentions efficiently without the use of a
specialized lexicon.

Extraction versus string matching
We next determined performance of MTag relative to a
baseline system that could be easily employed. For the
baseline system, the NCI neoplasm ontology, a term list of
5,555 malignancies, was used as a lexicon to identify
malignancy mentions [22]. Lexicon terms were individu-
ally queried against text by case-insensitive exact string
matching. A subset of 39 abstracts randomly selected from
the testing set, which together contained 202 malignancy
mentions, were used to compare the automated extractor
and baseline results. MTag identified 190 of the 202 men-
tions correctly (94.1%), while the NCI list identified only
85 mentions (42.1%), all of which were also identified by
the extractor. We also determined the performance of
string matching that instead used the set of malignancy
mentions identified in the manually curated training set
annotations (1,010 documents) as a matching lexicon.
This system identified 79 of 202 mentions (39.1%). Com-
bining the manually-derived lexicon with the NCI lexicon
yielded 124 of 202 matches (61.4%).

A closer analysis of the 68 malignancy mentions missed
by the string matching with combined lists but positively
identified by MTag determined two general subclasses of
additional malignant mentions. The majority of MTag-
unique mentions were lexical or modified variations of
malignancies present either in the training data or in the
NCI lexicon, such as minor variations in spelling and
form (e.g., "leukaemia" versus "leukemia"), and acro-
nyms (e.g., "AML" in place of "acute myeloid leukemia").
More importantly, a substantial minority of mentions
identified only by MTag were instances of the extractor
determining new mentions of malignancies that were, in
many cases, neither obvious nor represented in readily
available lexicons. For example, "temporal lobe benign
capillary haemangioblastoma" and "parietal lobe gangli-
oglioma" are neither in the NCI list or training set per se,
or approximated as such by a lexical variant. This suggests
that MTag contributes a significant learning component.

Application to MEDLINE
MTag was then used to extract mentions of malignancy
from all MEDLINE abstracts through 2005. Extraction
took 1,642 CPU-hours (68.4 CPU-days; 2.44 days on our
28-CPU cluster) to process 15,433,668 documents. A total

of 9,153,340 redundant mentions and 580,002 unique
mentions (ignoring case) were identified. Interestingly,
the ratio of unique new mentions identified relative to the
number of abstracts analyzed was relatively uniform,
ranging from a rate of 0.183 new mentions per abstract for
the first 0.1% of documents to a rate of 0.038 new men-
tions per abstract for the last 1% of documents. This indi-
cated that a substantial rate of new mentions was being
maintained throughout the extraction process.

The 25 mentions found in the greatest number of
abstracts by MTag are listed in Table 1. Six of these malig-
nant phrases: pulmonary, fibroblasts, neoplastic, neo-
plasm metastasis, extramural, and abdominal did not
match our definition of malignancy. Of these, only "extra-
mural" is not frequently associated with malignancy
descriptions and is likely the result of containing character
n-grams that are generally indicative of malignancy men-
tions. The remaining five phrases are likely the result of
the extractor failing to properly define mention bounda-
ries in certain cases (e.g., tagging "neoplasm" rather than
"brain neoplasm"), or alternatively, shared use of an oth-
erwise indicative character string (e.g., "opl" in "brain
neoplasm" and "neoplastic") between a true positive and
a false positive.

For comparison, we also determined the corresponding
number of articles identified both by keyword searching
of PubMed and by exact string matching of MEDLINE for
each of the 19 most common true malignancy types
(Table 1). Overall, MTag's comparative recall was 1.076
versus PubMed keyword searching and 0.814 versus string
matching. As PubMed keyword searching uses concept
mapping to relate keywords to related concepts, thus pro-
viding query expansion, the document retrieval totals
derived from this approach do not strictly compare to
MTag's approach. Furthermore, the exact string totals
would be inflated relative to the MTag totals, as for exam-
ple the phrase "myeloid leukemia" would be counted
both for this category and for a category "leukemia" with
exact string matching, but would only be counted for the
former phrase by MTag. To adjust for these discrepancies,
for MTag document totals listed in Table 1, we included
documents that were tagged with malignancy mentions
that were both strict syntactic parents and biological chil-
dren of the phrase used. For example, we included articles
identified by MTag with the phrase "small-cell lung can-
cer" within the total for the phrase "lung cancer".

Comparison of these totals between MTag articles and
PubMed keyword searching revealed that MTag provided
high recall for most malignancies. Interestingly, there are
three malignancy mention instances ("carcinoma", "sar-
coma", "melanoma") that have more MTag-identified
articles than for PubMed keyword searches. This suggests
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that a more formalized normalization of MTag-derived
mentions might assist both with efficiency and recall if
employed in concert with the manual annotation proce-
dure currently employed by MEDLINE. Furthermore,
MTag's document recall compared quite favorably to exact
string matching. Only two of the 25 malignancy mentions
yielded less than 60% as many articles via MTag than via
PubMed exact string matching ("bone neoplasms" and
"lung cancer"). In these two cases, the concept-mapping
PubMed search identifies the articles with a broader range
beyond the search terms. For example, a PubMed search
for the term "lung cancer" identifies articles describing
"lung neoplasms", while for "bone neoplams", articles
focusing on related concepts such as "osteoma" and
"sphenoid meningioma" are identified by PubMed. Gen-
erally, MTag recall would be expected to improve further
after a subsequent normalization process that maps
equivalent phrases to a standard referent.

To assess document-level precision, we randomly selected
100 abstracts identified by MTag each for the malignan-
cies "breast cancer" and "adenocarcinoma". Manual eval-
uation of these abstracts showed that all of the articles
were directly describing the respective malignancies.

Finally, we evaluated both the 250 most frequently men-
tioned malignancies as well as a random set of 250
extracted malignancy mentions from the all-MEDLINE-
extracted set. For the frequently occurring mentions,
72.06% were considered to be true malignancies; this set
corresponds to 0.043% of all malignancy mentions. For
the random set, 78.93% were true malignancies. This sug-
gests that such extracted mention sets might serve as a
first-pass exhaustive lexicon of malignancy mentions.
Comparison of the entire set of unique mentions with the
NCI neoplasm list showed that 1,902 of the 5,555 NCI
terms (34.2%) were represented in the extracted literature.

Availability and Requirements
MTag is platform independent, written in java, and
requires java 1.4.2 or higher to run. The software isavaila-
ble without restrictions under the GNU General Public
License at http://bioie.ldc.upenn.edu/
index.jsp?page=soft_tools_MalignancyTaggers.html.
MTag has been engineered to directly accept files down-
loaded from PubMed and formatted in MEDLINE format
as input. MTag provides output options of text or HTML
file versions of the extractor results. The text file repeats
the input file with recognized malignancy mentions

Table 1: Top 25 MTag identified mentions and their corresponding PubMED keyword and MEDLINE exact string matching search 
results.

MTag-identified Mentions Evaluation MTag articles PubMED keyword articles MEDLINE exact matches

carcinoma True Positive 861214 466958 891996
breast neoplasms True Positive 129096 133592 137445
adenocarcinoma True Positive 166302 208117 183654
lung neoplasms True Positive 104176 110378 111869
pulmonary False Positive
breast cancer True Positive 91446 147286 128381
lymphoma True Positive 182764 158674 226407
liver neoplasms True Positive 69513 84529 84712
fibroblasts False Positive
skin neoplasms True Positive 62282 66072 66105
neoplastic False Positive
neoplasm metastasis False Positive
brain neoplasms True Positive 58729 84636 63586
stomach neoplasms True Positive 50019 52566 55208
prostatic neoplasms True Positive 48042 49110 50312
leukemia True Positive 163011 190798 368980
colonic neoplasms True Positive 41327 47402 42841
cervical neoplasms True Positive 40998 41424 41717
sarcoma True Positive 142665 110920 242654
bone neoplasms True Positive 33568 73429 35091
melanoma True Positive 79519 61134 126681
pancreatic neoplasms True Positive 31598 33775 33291
extramural False Positive
lung cancer True Positive 53601 118679 66071
abdominal False Positive
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appended at the end of the file. The HTML file provides
markup of the original abstract with color-highlighted
malignancy mentions, as shown in Figure 1.

Discussion
We have adapted an entity extraction approach that has
been shown to be successful for recognition of molecular
biological entities and have shown that it also performs
with high accuracy for disease labels. It is evident that an
F-measure of 0.83 is not sufficient as a stand-alone
approach for curation tasks, such as the de novo popula-
tion of databases. However, such an approach provides
highly enriched material for manual curators to utilize
further. As was determined by our comparisons with lexi-
cal string matching and PubMed-based approaches, our
extraction method demonstrated substantial improve-
ment and efficiency over commonly employed methods
for document retrieval. Furthermore, MTag appeared to be
accurately predicting malignancy mentions by learning
and exploiting syntactic patterns encountered in the train-
ing corpus.

Analysis of mis-annotations would likely suggest addi-
tional features and/or heuristics that could boost perform-
ance considerably. For example, anatomical and
histological descriptions were frequent among MTag false
positive mentions. Incorporation of lexicons for these
entity types as negative features within the MTag model
would likely increase precision. Our training set also does
not include a substantial number of documents that do
not contain mentions of malignancy; recent unpublished
work from our group suggests that inclusion of such doc-
uments significantly impacts extractor performance in a
positive manner.

Unlike the first iteration of our CRF model [14], the MTag
application required only modest computational effort
(several weeks vs. several months) of retraining and cus-
tomization time (see Methods). To our surprise, the addi-
tion of biological features, including an extensive lexicon
for malignancy mentions, provided very little boost to the
recall rate. This provides evidence that our general CRF
model is flexible, broadly applicable, and if these results

Example of the HTML output of MTag for an annotated abstract [31]Figure 1
Example of the HTML output of MTag for an annotated abstract [31]. Malignancy type mentions identified by MTag are shown 
in bold, italicized, and blue text.
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hold true for additional entity types, might lessen the
need for creating highly specified extractors. In addition,
the need for extensive domain-specific lexicons, which do
not readily exist for many disease attributes, might be
obviated. If so, one approach to comprehensive text min-
ing of biomedical literature might be to employ a series of
modular extractors, each of which is quickly generated
and then trained for a particular entity or relation class.
Conversely, it is important to note that the entity class of
malignancy possesses a relatively discrete conceptualiza-
tion relative to certain other phenotypic and disease con-
cepts. Further adaptation of our extractor model for more
variably described entity types, such as morphological
and developmental descriptions of neoplasms, is under-
way. However, the finding that biological feature addition
provided minimal gain in accuracy suggests that further
improvements may be more difficult to obtain than by
merely identifying and adding additional domain-specific
features. Significantly, challenges in rapid generation of
annotations for extractor training, as well as procedures
for efficient and accurate entity normalization, still
remain.

When combined with expert evaluation of output, extrac-
tors can assist with vocabulary building for targeted entity
classes. To demonstrate feasibility, we extracted mentions
of malignancy for all pre-2006 MEDLINE abstracts. Our
results indicate that MTag can generate such a vocabulary
readily and with moderate computational resources and
expertise. With manual intervention, this list could be
linked to the underlying literature records and also inte-
grated with other ontological and database resources,
such as the Gene Ontology, UMLS, caBIG, or tumor-spe-
cific databases [23-25]. Since normalization of disease-
descriptive term lists requires considerable specialized
expertise, the role of an extractor in this setting more
appropriately serves as an information harvester. How-
ever, this role is important, as such supervised lists are
often not readily available, due in part to the variability in
which phenotypic and disease descriptions can be
described, and in part to the lack of nomenclature stand-
ards in many cases.

Finally, to our knowledge, MTag is one of the first directed
efforts to automatically extract entity mentions in a dis-
ease-oriented domain with high accuracy. Therefore,
applications such as MTag could contribute to the extrac-
tion and integration of unstructured, medically-oriented
information, such as physician notes and physician-dic-
tated letters to patients and practitioners. Future work will
include determining how well similar extractors perform
for identifying mentions of malignant attributes with
greater (e.g. tumor histology) and lesser (e.g. tumor clini-
cal stage) semantic and syntactic heterogeneity.

Conclusion
MTag can automatically identify and extract mentions of
malignancy with high accuracy from biomedical text.
Generation of MTag required only moderate computa-
tional expertise, development time, and domain knowl-
edge. MTag substantially outperformed information
retrieval methods using specialized lexicons. MTag also
demonstrated the ability to assist with the generation of a
literature-based vocabulary for all neoplasm mentions,
which is of benefit for data integration procedures requir-
ing normalization of malignancy mentions. Parallel itera-
tion of the core algorithm used for MTag could provide a
means for more systematic annotation of unstructured
text, involving the identification of many entity types; and
application to phenotypic and medical classes of informa-
tion.

Methods
Task definition
Our task was to develop an automated method that would
accurately identify and extract strings of text correspond-
ing to a clinician's or researcher's reference to cancer
(malignancy). Our definition of the extent of the label
"malignancy" was generally the full noun phrase encom-
passing a mention of a cancer subtype, such that "neurob-
lastoma", "localized neuroblastoma", and "primary
extracranial neuroblastoma" were considered to be dis-
tinct mentions of malignancy. Directly adjacent preposi-
tional phrases, such as "cancer <of the lung>", were not
allowed, as these constructions often denoted ambiguity
as to exact type. Within these confines, the task included
identification of all variable descriptions of particular
malignancies, such as the forms "squamous cell carci-
noma" (histological observation) or "lung cancer" (ana-
tomical location), both of which are underspecified forms
of "lung squamous cell carcinoma". Our formal definition
of the semantic type "malignancy" can be found at the
Penn BioIE website [26].

Corpora
In order to train and test the extractor with both depth and
breadth of entity mention, we combined two corpora for
testing. The first corpus concentrated upon a specific
malignancy (neuroblastoma) and consisted of 1,000 ran-
domly selected abstracts identified by querying PubMed
with the query terms "neuroblastoma" and "gene". The
second corpus consisted of 600 abstracts previously
selected as likely containing gene mutation instances for
genes commonly mutated in a wide variety of malignan-
cies. These sets were combined to create a single corpus of
1,442 abstracts, after eliminating 158 abstracts that
appeared to be non-topical, had no abstract body, or were
not written in English. This set was manually annotated
for tokenization, part-of-speech assignments, and malig-
nancy named entity recognition, the latter in strict adher-
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ence to our pre-established entity class definition [27,28].
Sequential dual pass annotations were performed on all
documents by experienced annotators with biomedical
knowledge, and discrepancies were resolved through
forum discussions. A total of 7,303 malignancy mentions
were identified in the document set. These annotations
are available in corpus release v0.9 from our BioIE website
[29].

Algorithm
Based on the manually annotated data, an automatic
malignancy mention extractor (MTag) was developed
using the probability model Conditional Random Fields
(CRFs) [20]. We have previously demonstrated that this
model yields state-of-the-art accuracy for recognition of
molecular named entity classes [5,14]. CRFs model the
conditional probability of a tag sequence given an obser-
vation sequence. We denote that O is an observation
sequence, or a sequence of tokens in the text, and t is a cor-
responding tag sequence in which each tag labels the cor-
responding token with either Malignancy (meaning that
the token is part of a malignancy mention) or Other. CRFs
are log-linear models based on a set of feature functions,
fi(tj, tj-1, O), which map predicates on observation/tag-
transition pairs to binary values. As shown in the formula
below, the function value is 1.0 when the tag sequence is
Malignancy; otherwise (o.w.) it is 0. A particular advantage
of this model is that it allows the effects of many poten-
tially informative features to be simultaneously weighed.
Consider, for example, the following feature:

This feature represents the probability of whether the
token "cancer" is tagged with label Malignancy given the
presence of "lung" as the previous token. Features such as
this would likely receive a high weight, as they represent
informative associations between observation predicates
and their corresponding labels.

Our CRF algorithm considers many textual features when
it makes decisions on classifying whether a word com-
prises all or part of a malignancy mention. Word-based
features included whether a word has been identified as
being a malignancy mention by manual annotation of
text used as training material. The frequency of each string
of 2, 3, or 4 adjacent characters (character n-grams) within
each word of the training text was calculated, and the dif-
ferential frequency of each n-gram within words manually
tagged as being malignancy mentions, relative to the over-
all frequency of these strings in the overall text, was con-
sidered as a series of features. Orthographic features
included the usage and distribution of punctuation, alter-

native spellings, and case usage. Domain-specific features
comprised a lexicon of 5,555 malignancies and a regular
expression for tokens containing the suffix -oma. In total,
MTag incorporated 80,294 unique features. All observa-
tion predicates, either with or without the biological pred-
icates, were then applied over all labels, applying a token
window of (-1, 1) to create the final set of features. The
MALLET toolkit [30] was used as the implementation of
CRFs to build our model.

Evaluation
The evaluation set of 432 abstracts comprised 2,031 sen-
tences containing mentions of malignancy and 3,752 sen-
tences without mentions, as determined by manual
assessment of entity content. The predicted malignancy
mention was considered correctly identified if, and only
if, the predicted and manually labeled tags were exactly
the same in content and both boundary determinations.
The performance of MTag was calculated according to the
following metrics: Precision (number of entities predicted
correctly divided by the total number of entities pre-
dicted), Recall (number of entities predicted correctly
divided by the total number of entities identified manu-
ally), and F-measure [(2*Precision*Recall)/(Preci-
sion+Recall)].

List of Abbreviations Used
CRF, conditional random field
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