
Using Derivation Trees for Treebank Error Detection

Seth Kulick and Ann Bies and Justin Mott

Linguistic Data Consortium
University of Pennsylvania

3600 Market Street, Suite 810
Philadelphia, PA 19104

{skulick,bies,jmott}@ldc.upenn.edu

Abstract

This work introduces a new approach to

checking treebank consistency. Derivation

trees based on a variant of Tree Adjoining

Grammar are used to compare the annotation

of word sequences based on their structural

similarity. This overcomes the problems of

earlier approaches based on using strings of

words rather than tree structure to identify the

appropriate contexts for comparison. We re-

port on the result of applying this approach

to the Penn Arabic Treebank and how this ap-

proach leads to high precision of error detec-

tion.

1 Introduction

The internal consistency of the annotation in a tree-

bank is crucial in order to provide reliable training

and testing data for parsers and linguistic research.

Treebank annotation, consisting of syntactic struc-

ture with words as the terminals, is by its nature

more complex and thus more prone to error than

other annotation tasks, such as part-of-speech tag-

ging. Recent work has therefore focused on the im-

portance of detecting errors in the treebank (Green

and Manning, 2010), and methods for finding such

errors automatically, e.g. (Dickinson and Meur-

ers, 2003b; Boyd et al., 2007; Kato and Matsubara,

2010).

We present here a new approach to this problem

that builds upon Dickinson and Meurers (2003b), by

integrating the perspective on treebank consistency

checking and search in Kulick and Bies (2010). The

approach in Dickinson and Meurers (2003b) has cer-

tain limitations and complications that are inher-

ent in examining only strings of words. To over-

come these problems, we recast the search as one of

searching for inconsistently-used elementary trees in

a Tree Adjoining Grammar-based form of the tree-

bank. This allows consistency checking to be based

on structural locality instead of n-grams, resulting in

improved precision of finding inconsistent treebank

annotation, allowing for the correction of such in-

consistencies in future work.

2 Background and Motivation

2.1 Previous Work - DECCA

The basic idea behind the work in (Dickinson and

Meurers, 2003a; Dickinson and Meurers, 2003b) is

that strings occurring more than once in a corpus

may occur with different “labels” (taken to be con-

stituent node labels), and such differences in labels

might be the manifestation of an annotation error.

Adopting their terminology, a “variation nucleus” is

the string of words with a difference in the annota-

tion (label), while a “variation n-gram” is a larger

string containing the variation nucleus.

(1) a. (NP the (ADJP most

important) points)

b. (NP the most important points)

For example, suppose the pair of phrases in (1)

are taken from two different sentences in a cor-

pus. The “variation nucleus” is the string most

important, and the larger surrounding n-gram

is the string the most important points.

This is an example of error in the corpus, since the

second annotation is incorrect, and this difference

manifests itself by the nucleus having in (a) the label

ADJP but in (b) the default label NIL (meaning for

their system that the nucleus has no covering node).

Dickinson and Meurers (2003b) propose a “non-

fringe heuristic”, which considers two variation nu-

clei to have a comparable context if they are prop-

erly contained within the same variation n-gram -

i.e., there is at least one word of the n-gram on both

sides of the nucleus. For the the pair in (1), the two

instances of the variation nucleus satisfy the non-

fringe heuristic because they are properly contained

within the identical variation n-gram (with the and

points on either side). See Dickinson and Meur-

ers (2003b) for details. This work forms the basis

for the DECCA system.1

2.2 Motivation for Our Approach

(2) a. NP

qmp

summit

NP

$rm

Sharm

NP

Al$yx

the Sheikh

b. NP

qmp

summit

NP

$rm

Sharm

Al$yx

the Sheikh

c. NP

qmp

summit

NP

NP

$rm

Sharm

Al$yx

the Sheikh

NP

(mSr

Egypt

)

We motivate our approach by illustrating the lim-

itations of the DECCA approach. Consider the trees

(2a) and (2b), taken from two instances of the three-

word sequence qmp $rm Al$yx in the Arabic

Treebank.2 There is no need to look at any surround-

ing annotation to conclude that there is an incon-

sistency in the annotation of this sequence.3 How-

ever, based on (2ab), the DECCA system would not

even identify the three-word sequence qmp $rm

Al$yx as a nucleus to compare, because both in-

stances have a NP covering node, and so are consid-

ered to have the same label. (The same is true for

the two-word subsequence $rm Al$yx.)

Instead of doing the natural comparison of the

1http://www.decca.osu.edu/.
2In Section 4 we give the details of the corpus. We use the

Buckwalter Arabic transliteration scheme (Buckwalter, 2004).
3While the nature of the inconsistency is not the issue here,

(b) is the correct annotation.

inconsistent structures for the identical word se-

quences as in (2ab), the DECCA approach would

instead focus on the single word Al$yx, which has

a NP label in (2a), while it has the default label

NIL in (2b). However, whether it is reported as a

variation depends on the irrelevant fact of whether

the word to the right of Al$yx is the same in both

instances, thus allowing it to pass the non-fringe

heuristic (since it already has the same word, $rm,

on the left).

Consider now the two trees (2bc). There is an

additional NP level in (2c) because of the adjunct

(mSr), causing qmp $rm Al$yx to have no

covering node, and so have the default label NIL,

and therefore categorized as a variation compared to

(2b). However, this is a spurious difference, since

the label difference is caused only by the irrelevant

presence of an adjunct, and it is clear, without look-

ing at any further structure, that the annotation of

qmp $rm Al$yx is identical in (2bc). In this case

the “non-fringe heuristic” serves to avoid report-

ing such spurious differences, since if qmp $rm

Al$yx did not have an open parenthesis on the right

in (b), and qmp did not have the same word to its

immediate left in both (b) and (c), the two instances

would not be surrounded by the same larger varia-

tion n-gram, and so would not pass the non-fringe

heuristic.

This reliance on irrelevant material arises from us-

ing on a single node label to characterize a struc-

tural annotation and the surrounding word context

to overcome the resulting complications. Our ap-

proach instead directly compares the annotations of

interest.

3 Using Derivation Tree Fragments

We utilize ideas from the long line of Tree Adjoining

Grammar-based research (Joshi and Schabes, 1997),

based on working with small “elementary trees” (ab-

breviated “etrees” in the rest of this paper) that are

the “building blocks” of the full trees of a treebank.

This decomposition of the full tree into etrees also

results in a “derivation tree” that records how the el-

ementary trees relate to each other.

We illustrate the basics of TAG-based deriva-

tion we are using with examples based on the

trees in (2). Our grammar is a TAG variant with

qmp

summit

#c1

S:1.2

NP

NP^

#c2

M:1,right

#c4 NP

mSr

Egypt

qmp

summit

#a1

S:1.2

NP

NP^

$rm

Sharm

#a2

S:1.2

NP

NP^

Al$yx

The Sheikh

NP

#a3

qmp

summit

#b1

S:1.2

NP

NP^

$rm

Sharm

#b2

NP

Al$yx

The Sheikh

 For (2a) For (2b) For (2c)

A:1.1,left#b3

NP

Al$yx

The Sheikh

A:1.1,left

#c3

$rm

Sharm

Figure 1: Etrees and Derivation Trees for (2abc).

tree-substitution, sister-adjunction, and Chomsky-

adjunction (Chiang, 2003). Sister adjunction at-

taches a tree (or single node) as a sister to another

node, and Chomsky-adjunction forms a recursive

structure as well, duplicating a node. As typically

done, we use head rules to decompose a full tree and

extract the etrees. The three derivation trees, corre-

sponding to (2abc), are shown in Figure 1.

Consider first the derivation tree for (2a). It has

three etrees, numbered a1, a2, a3, which are the

nodes in the derivation tree which show how the

three etrees connect to each other. This derivation

tree consists of just tree substitutions. The ˆ sym-

bol at node NPˆ in a1 indicates that it is a sub-

stitution node, and the S:1.2 above a2 indicates

that it substitutes into node at Gorn address 1.2 in

tree a1 (i.e., the substitution node), and likewise

for a3 substituting into a2. The derivation tree for

(2b) also has three etrees, although the structure

is different. Because the lower NP is flat in (2b),

the rightmost noun, Al$yx, is taken as the head

of the etree b2, with the degenerate tree for $rm

sister-adjoining to the left of Al$yx, as indicated

by the A:1.1,left. The derivation tree for (2c)

is identical to that of (2b), except that it has the

additional tree c4 for the adjunct mSr, which right

Chomsky-adjoins to the root of c2, as indicated by

the M:1,right.4

4We leave out the irrelevant (here) details of the parentheses

This tree decomposition and resulting derivation

tree provide us with the tool for comparing nuclei

without the interfering effects from words not in the

nucleus. We are interested not in the derivation tree

for an entire sentence, but rather only that slice of

it having etrees with words that are in the nucleus

being examined, which we call the derivation tree

fragment. That is, for a given nucleus being exam-

ined, we partition its instances based on the covering

node in the full tree, and within each set of instances

we compare the derivation tree fragments for each

instance. These derivation tree fragments are the

relevant structures to compare for inconsistent an-

notation, and are computed separately for each in-

stance of each nucleus from the full derivation tree

that each instance is part of.5

For example, for comparing our three instances

of qmp $rm Al$yx, the three derivation tree frag-

ments would be the structures consisting of (a1, a2,

a3), (b1, b2, b3) and (c1, c2, c3), along with their

connecting Gorn addresses and attachment types.

This indicates that the instances (2ab) have differ-

ent internal structures (without the need to look at a

surrounding context), while the instances (2bc) have

identical internal structures (allowing us to abstract

away from the interfering effects of adjunction).

Space prevents full discussion here, but the etrees

and derivation trees as just described require refine-

ment to be truly appropriate for comparing nuclei.

The reason is that etrees might encode more infor-

mation than is relevant for many comparisons of nu-

clei. For example, a verb might appear in a corpus

with different labels for its objects, such as NP or

SBAR, etc., and this would lead to its having dif-

ferent etrees, differing in their node label for the

substitution node. If the nucleus under compari-

son includes the verb but not any words from the

complement, the inclusion of the different substi-

tution nodes would cause irrelevant differences for

that particular nucleus comparison.

We solve these problems by mapping down the

in the derivation tree.
5A related approach is taken by Kato and Matsubara (2010),

who compare partial parse trees for different instances of the

same sequence of words in a corpus, resulting in rules based on

a synchronous Tree Substitution Grammar (Eisner, 2003). We

suspect that there are some major differences between our ap-

proaches regarding such issues as the representation of adjuncts,

but we leave such a comparison for future work.

System nuclei n-grams instances

DECCA 24,319 1,158,342 2,966,274

Us 54,496 not used 605,906

Table 1: Data examined by the two systems for the ATB

System nuclei non-duplicate types of

found nuclei found inconsistency

DECCA 4,140 unknown unknown

Us-internal 9,984 4,272 1,911

Table 2: Annotation inconsistencies reported for the ATB

representation of the etrees in a derivation tree frag-

ment to form a “reduced” derivation tree fragment.

These reductions are (automatically) done for each

nucleus comparison in a way that is appropriate for

that particular nucleus comparison. A particular

etree may be reduced in one way for one nucleus,

and then a different way for a different nucleus. This

is done for each etree in a derivation tree fragment.

4 Results on Test Corpus

Green and Manning (2010) discuss annotation con-

sistency in the Penn Arabic Treebank (ATB), and for

our test corpus we follow their discussion and use

the same data set, the training section of three parts

of the ATB (Maamouri et al., 2008a; Maamouri et

al., 2009; Maamouri et al., 2008b). Their work is

ideal for us, since they used the DECCA algorithm

for the consistency evaluation. They did not use the

“non-fringe” heuristic, but instead manually exam-

ined a sample of 100 nuclei to determine whether

they were annotation errors.

4.1 Inconsistencies Reported

The corpus consists of 598,000 tokens. Table 1 com-

pares token manipulation by the two systems. The

DECCA system6 identified 24,319 distinct variation

nuclei, while our system had 54,496. DECCA ex-

amined 1,158,342 n-grams, consisting of 2,966,274

6We worked at first with version 0.2 of the software. How-

ever this software does not implement the non-fringe heuristic

and does not make available the actual instances of the nuclei

that were found. We therefore re-implemented the algorithm

to make these features available, being careful to exactly match

our output against the released DECCA system as far as the nu-

clei and n-grams found.

instances (i.e., different corpus positions of the n-

grams), while our system examined 605,906 in-

stances of the 54,496 nuclei. For our system, the

number of nuclei increases and the variation n-

grams are eliminated. This is because all nuclei with

more than one instance are evaluated, in order to

search for constituents that have the same root but

different internal structure.

The number of reported inconsistencies is shown

in Table 2. DECCA identified 4,140 nuclei as likely

errors - i.e., contained in larger n-grams, satisfying

the non-fringe heuristic. Our system identified 9,984

nuclei as having inconsistent annotation - i.e., with

at least two instances with different derivation tree

fragments.

4.2 Eliminating Duplicate Nuclei

Some of these 9,984 nuclei are however redundant,

due to nuclei contained within larger nuclei, such as

$rm Al$yx inside qmp $rm Al$yx in (2abc).

Eliminating such duplicates is not just a simple mat-

ter of string inclusion, since the larger nucleus can

sometimes reveal different annotation inconsisten-

cies than just those in the smaller substring nucleus,

and also a single nucleus string can be included in

different larger nuclei. We cannot discuss here the

full details of our solution, but it basically consists

of two steps.

First, as a result of the analysis described so far,

for each nucleus we have a mapping of each instance

of that nucleus to a derivation tree fragment. Sec-

ond, we test for each possible redundancy (meaning

string inclusion) whether there is a true structural re-

dundancy by testing for an isomorphism between the

mappings for two nuclei. For this test corpus, elimi-

nating such duplicates leaves 4,272 nuclei as having

inconsistent annotation. It is unknown how many

of the DECCA nuclei are duplicates, although many

certainly are. For example, qmp $rm Al$yx and

$rm Al$yx are reported as separate results.

4.3 Grouping Inconsistencies by Structure

Across all variation nuclei, there are only a finite

number of derivation tree fragments and thus ways

in which such fragments indicate an annotation in-

consistency. We categorize each annotation incon-

sistency by the inconsistency type, which is simply

a set of numbers representing the different derivation

tree fragments. We can then present the results not

by listing each nucleus string, but instead by the in-

consistency types, with each type having some num-

ber of nuclei associated with it.

For example, instances of $rm Al$yx might

have just the derivation tree fragments (a2, a3) and

(b2, b3) in Figure 1, and the numbers representing

this pair is the “inconsistency type” for this (nucleus,

internal context) inconsistency. There are nine other

nuclei reported as having an inconsistency based on

the exact same derivation tree fragments (abstracting

only away from the particular lexical items), and so

all these nuclei are grouped together as having the

same “inconsistency type”. This grouping results in

the 4,272 non-duplicate nuclei found being grouped

into 1,911 inconsistency types.

4.4 Precision and Recall

The grouping of internal checking results by incon-

sistency types is a qualitative improvement in con-

sistency reporting, with a high precision.7 By view-

ing inconsistencies by structural annotation types,

we can examine large numbers of nuclei at a time.

Of the first 10 different types of derivation tree in-

consistencies, which include 266 different nuclei, all

10 appear to real cases of annotation inconsistency,

and the same seems to hold for each of the nuclei in

those 10 types, although we have not checked every

single nucleus. For comparison, we chose a sample

of 100 nuclei output by DECCA on this same data,

and by our judgment the DECCA precision is about

74%, including 15 duplicates.

Measuring recall is tricky, even using the errors

identified in Green and Manning (2010) as “gold”

errors. One factor is that a system might report a

variation nucleus, but still not report all the relevant

instances of that nucleus. For example, while both

systems report $rm Al$yx as a sequence with in-

consistent annotation, DECCA only reports the two

instances that pass the “non-fringe heuristic”, while

our system lists 132 instances of $rm Al$yx, parti-

tioning them into the two derivation tree fragments.

We will be carrying out a careful accounting of the

recall evaluation in future work.

7“Precision” here means the percentage of reported varia-

tions that are actually annotation errors.

5 Future Work

While we continue the evaluation work, our pri-

mary concern now is to use the reported inconsistent

derivation tree fragments to correct the annotation

inconsistencies in the actual data, and then evaluate

the effect of the corpus corrections on parsing. Our

system groups all instances of a nucleus into differ-

ent derivation tree fragments, and it would be easy

enough for an annotator to specify which is correct

(or perhaps instead derive this automatically based

on frequencies).

However, because the derivation trees and etrees

are somewhat abstracted from the actual trees in the

treebank, it can be challenging to automatically cor-

rect the structure in every location to reflect the cor-

rect derivation tree fragment. This is because of de-

tails concerning the surrounding structure and the

interaction with annotation style guidelines such as

having only one level of recursive modification or

differences in constituent bracketing depending on

whether a constituent is a “single-word” or not. We

are focusing on accounting for these issues in cur-

rent work to allow such automatic correction.

Acknowledgments

We thank the computational linguistics group at the

University of Pennsylvania for helpful feedback on

a presentation of an earlier version of this work.

We also thank Spence Green and Chris Manning

for supplying the data used in their analysis of the

Penn Arabic Treebank. This work was supported

in part by the Defense Advanced Research Projects

Agency, GALE Program Grant No. HR0011-06-

1-0003 (all authors) and by the GALE program,

DARPA/CMO Contract No. HR0011-06-C-0022

(first author). The content of this paper does not

necessarily reflect the position or the policy of the

Government, and no official endorsement should be

inferred.

References

Adriane Boyd, Markus Dickinson, and Detmar Meurers.

2007. Increasing the recall of corpus annotation er-

ror detection. In Proceedings of the Sixth Workshop

on Treebanks and Linguistic Theories (TLT 2007),

Bergen, Norway.

Tim Buckwalter. 2004. Buckwalter Arabic morphologi-

cal analyzer version 2.0. Linguistic Data Consortium

LDC2004L02.

David Chiang. 2003. Statistical parsing with an auto-

matically extracted tree adjoining grammar. In Data

Oriented Parsing. CSLI.

Markus Dickinson and Detmar Meurers. 2003a. Detect-

ing errors in part-of-speech annotation. In Proceed-

ings of the 10th Conference of the European Chap-

ter of the Association for Computational Linguistics

(EACL-03), pages 107–114, Budapest, Hungary.

Markus Dickinson and Detmar Meurers. 2003b. Detect-

ing inconsistencies in treebanks. In Proceedings of the

Second Workshop on Treebanks and Linguistic The-

ories (TLT 2003), Sweden. Treebanks and Linguistic

Theories.

Jason Eisner. 2003. Learning non-isomorphic tree map-

pings for machine translation. In The Companion Vol-

ume to the Proceedings of 41st Annual Meeting of

the Association for Computational Linguistics, pages

205–208, Sapporo, Japan, July. Association for Com-

putational Linguistics.

Spence Green and Christopher D. Manning. 2010. Bet-

ter Arabic parsing: Baselines, evaluations, and anal-

ysis. In Proceedings of the 23rd International Con-

ference on Computational Linguistics (Coling 2010),

pages 394–402, Beijing, China, August. Coling 2010

Organizing Committee.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-

mars. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, Volume 3: Beyond

Words, pages 69–124. Springer, New York.

Yoshihide Kato and Shigeki Matsubara. 2010. Correct-

ing errors in a treebank based on synchronous tree sub-

stitution grammar. In Proceedings of the ACL 2010

Conference Short Papers, pages 74–79, Uppsala, Swe-

den, July. Association for Computational Linguistics.

Seth Kulick and Ann Bies. 2010. A TAG-derived

database for treebank search and parser analysis. In

TAG+10: The 10th International Conference on Tree

Adjoining Grammars and Related Formalisms, Yale.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma

Gaddeche, Wigdan Mekki, Sondos Krouna, and

Basma Bouziri. 2008a. Arabic treebank part 1 - v4.0.

Linguistic Data Consortium LDC2008E61, December

4.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma

Gaddeche, Wigdan Mekki, Sondos Krouna, and

Basma Bouziri. 2008b. Arabic treebank part 3 - v3.0.

Linguistic Data Consortium LDC2008E22, August 20.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma

Gaddeche, Wigdan Mekki, Sondos Krouna, and

Basma Bouziri. 2009. Arabic treebank part 2- v3.0.

Linguistic Data Consortium LDC2008E62, January

20.

