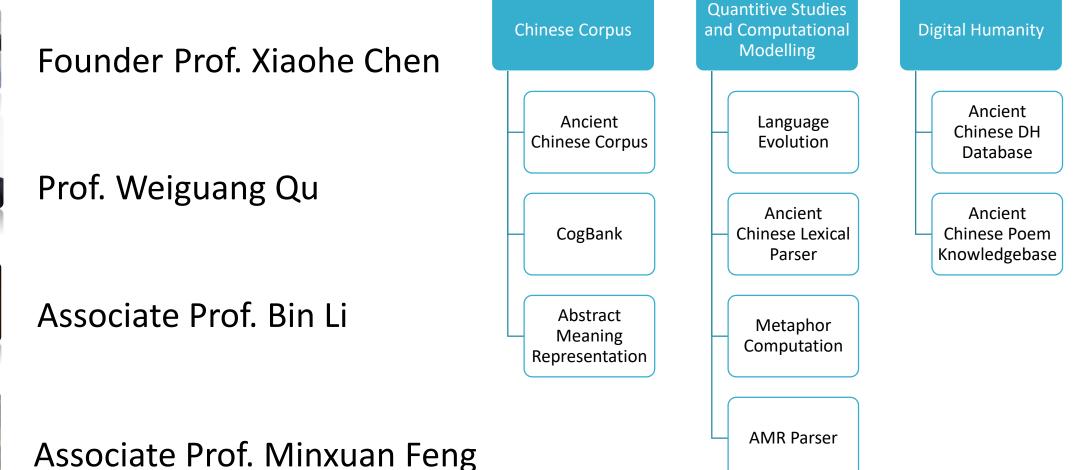


Construction and Analysis of the Chinese Abstract Meaning Representation Corpus

中文AMR语料库的构建与分析

Bin Li 李斌

School of Chinese Language and Literature, Nanjing Normal University, China Institute for Quantitative Social Science, Harvard University, USA Email: libin.njnu@gmail.com


http://www.cs.brandeis.edu/~clp/camr/camr.html

X Chinese Processing Group at NJNU

Login or Register

ABOUT

Data

MEMBERS

LDC Online

Tools

Papers

LR Wiki

Data Scholarships

DATA MANAGEMENT COLLABORATIONS

COMMUNICATIONS

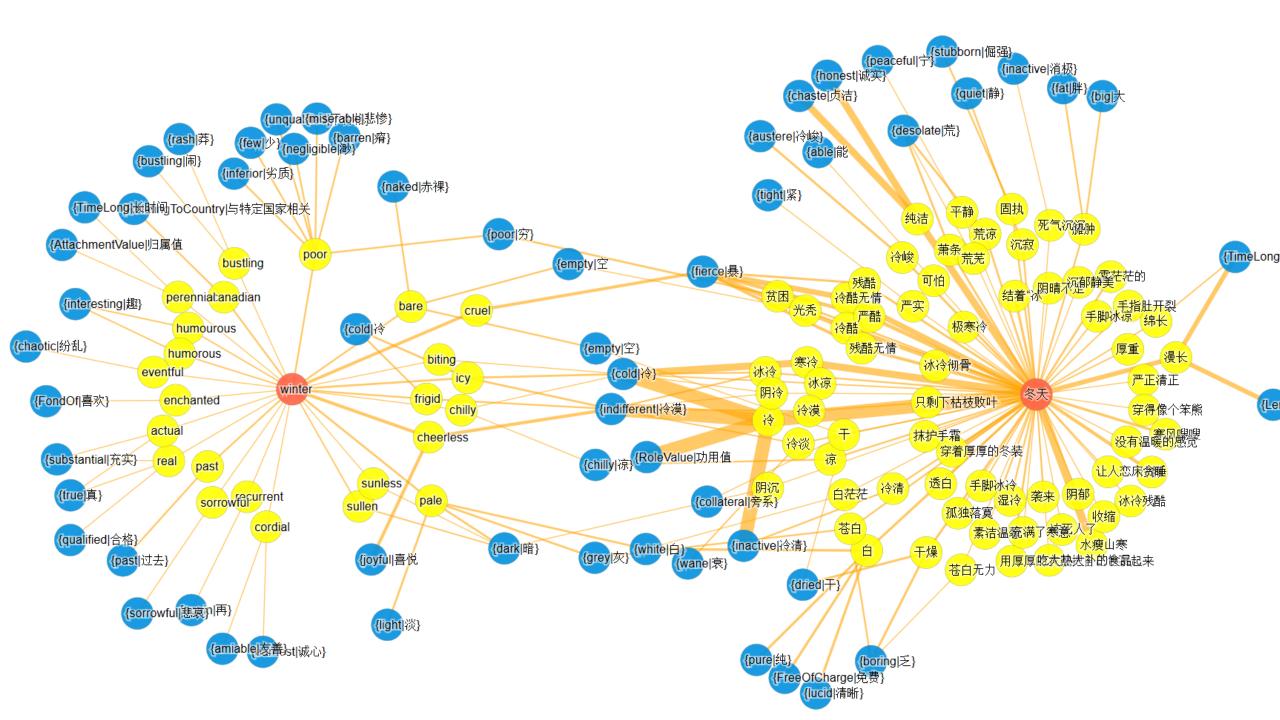
LANGUAGE RESOURCES

Home > Language Resources > Data

Ancient Chinese Corpus

Obtaining Data	Item Name:	Ancient Chinese Corpus
Catalog	Author(s):	Xiaohe Chen, Bin Li, Minxuan Feng, Chao Xu, Runhua Xu, Min Shi, Lili Yu, Lei Xiao,
By Year		Qingqing Wang
Top Ten Corpora	LDC Catalog No.:	LDC2017T14
Projects	ISBN:	1-58563-816-1
Search		
Memberships	ISLRN:	924-985-704-453-5

Introduction


Ancient Chinese Corpus was developed at Nanjing Normal University. It contains word-segmented and part-ofspeech tagged text from Zuozhuan, an ancient Chinese work believed to date from the Warring States Period (475-221 BC). Zuozhuan is a commentary on the Chungui, a history of the Chinese Spring and Autumn period (770-476 BC). This release is part of a continuing project to develop a large, part-of-speech tagged ancient Chinese corpus.

Data

Ancient Chinese Corpus consists of 180,000 Chinese characters and 195,000 segment units (including words and punctuation). The part-of-speech tag set was developed by Nanjing Normal University and contains 17 tags.

This release contains two text files: 268 paragraphs and 10,560 lines. A line is one sentence; paragraphs are separated by one empty line. Each word is tagged with its part-of-speech and separated by a space.

The files are presented in UTF-8 plain text files using traditional Chinese script.

 \sim

ABOUT

MEMBERS

Catalog

By Year

Projects

Search

Tools

Papers

LR Wiki

Memberships

Data Scholarships

DATA MANAGEMENT

COLLABORATIONS

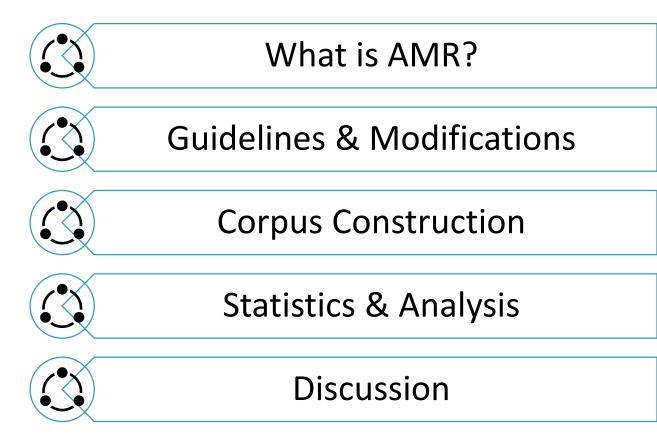
COMMUNICATIONS

Obtaining Data

Top Ten Corpora

~ LANGUAGE RESOURCES

Data

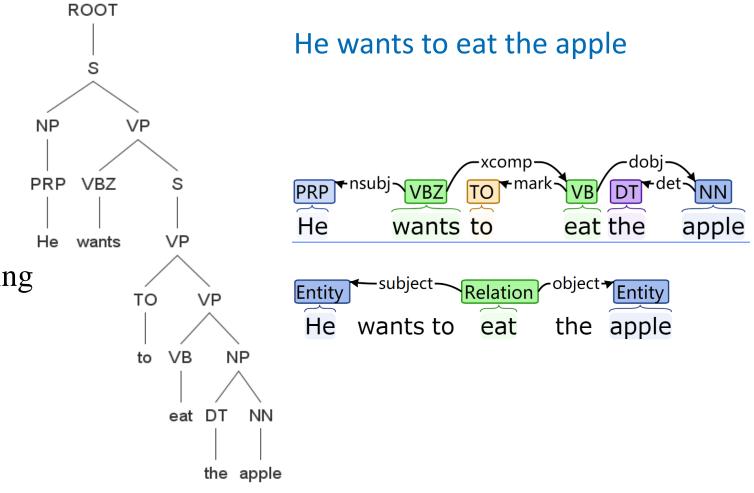

Home > Language Resources > Data

Chinese Abstract Meaning Representation 1.0

	Item Name:	Chinese Abstract Meaning Representation 1.0			
	Author(s):	Bin Li, Yuan Wen, Li Song, Rubing Dai, Weiguang Qu, Nianwen Xue			
	LDC Catalog No.:	LDC2019T07			
	ISBN:	1-58563-880-3			
	ISLRN:	376-537-072-369-4			
_	Release Date:	April 15, 2019			
	Member Year(s):	2019			
	DCMI Type(s):	Text			
	Data Source(s):	weblogs, discussion forum			
	Project(s):	ACE			
	Application(s):	parsing, syntactic parsing, semantic role labelling			
	Language(s):	Mandarin Chinese			

https://catalog.ldc.upenn.edu/LDC2019T07

Outlines



Main Questions

- What is AMR?
- Why graphs instead of trees?
- Could the concepts and relations on an AMR graph be aligned back to original words?
- Is AMR universal? Could it be applied to other languages?
- Is there something new discovered by Chinese AMR?

0. The structure of a sentence

- Syntax Tree
 - Chomsky 1957
 - Dependency 1959
- FrameNet
 - Fillmore 1977
 - Semantic Role Labelling

FrameNet

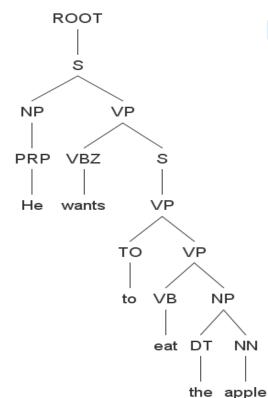
want.v

Frame Element	Core Type		
Degree	Peripheral		
Duration	Peripheral		
Event	Core		
Experiencer	Core		
Explanation	Extra-Thematic		
Focal_participant	Core		
Location_of_event	Core		
Manner 🛛 👘	Peripheral		
Place	Peripheral		
Purpose_of_event	Peripheral		
Role_of_focal_participant	Peripheral		
Time	Peripheral		
Time_of_event	Peripheral		

eat.v

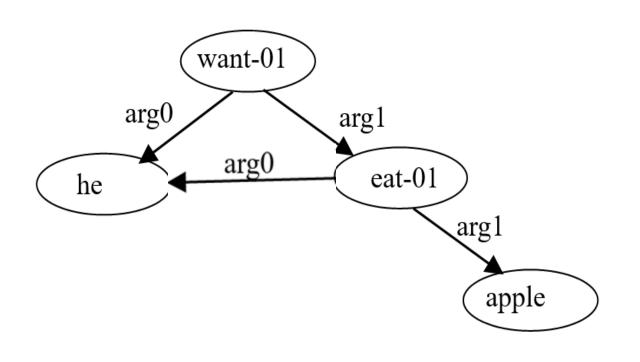
Frame Element	Core Type		
Degree	Peripheral		
Duration	Peripheral		
Ingestibles	Core		
Ingestor	Core		
Instrument	Peripheral		
Manner	Peripheral		
Means	Peripheral		
Place	Peripheral		
Purpose	Peripheral		
Source	Peripheral		
Time	Peripheral		

He wants to eat the apple

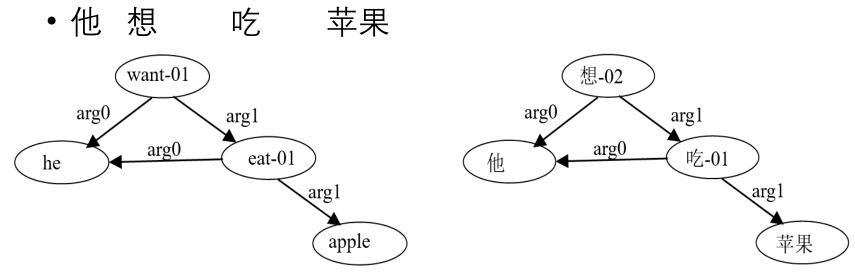

Want. Experiencer Eat.Ingestor

1. What is AMR?

• According to Banarescu et al.(2013),


the Abstract Meaning Representation of a sentence is a <u>https://amr.isi.edu/</u> rooted, directed, acyclic graph with labels on arcs(relations) and nodes(concepts).

NP


NN

He wants to eat the apple

1.2. Major Advantages of AMR Abstraction

- Use graph structure to solve argument sharing
 - He wants to eat the apple

It works on Chinese!

Re-analyze and adding concepts

• The dancer has gone.

・跳舞 的 走 了
・ Dance DE(of) go PERFECT.ASP

The dancer has gone g/go-01 :arg0 p/person :arg0-of d/dance-01 跳舞的走了 x/走-02 :arg0 p/person :arg0-of x1/跳舞-01

• Good solution for DE-Structure

1.3. Main Questions

✓ What is AMR?

- ✓Why graphs instead of trees?
- Could the concepts and relations on an AMR graph be aligned back to original words?
- Is AMR universal? Could it be applied to other languages?
- Is there something new discovered by Chinese AMR?

1.4. Major Problems of AMR

- Automatic Parsing is rather hard, only about 64%
 - SemEval 2016, 2017
- Alignment Problem
 - The word-concept alignment accuracy is about 90%
- Lacking corpus of other languages
 - English AMR corpus (40k sentences, <u>http://amr.isi.edu/</u>)
 - Chinse AMR corpus of *the little Prince* (Li et al., 2016)
 - Chinese Treebank, PropBank, now AMR.

Pros and Cons of AMR

• Pros

Argument sharing

Add/delete/replace concepts

Inner structure

No alignment

Tense/aspect/functional words

Discourse relations

2. Annotation Guidelines of Chinese AMR

- Following AMR's specification
 - Arg0-Arg5, relations, entities, etc.
- Improvement for Chinese
 - + Concept-to-word Alignment
 - + Relation-to-word Alignment
 - + 4 Non-core Relations
 - + Discourse Relations
 - + Specifications for Chinese
 - Reduplications
 - Headless Relative Construction
 - Verb-Complement Construction
 - Split Verb Construction

(Li et al., 2016)

2.1. Concept-to-word Alignment

- Word index concept ID
 - 谁¹ 帮² 了³ 窝(我)⁴ 这么⁵ 大⁶ 的⁷ 忙⁸?⁹
 - Who help ASP nest (me) such big DE business
 - Who helped me so much?

- Internal analysis of words
 - 土地¹ 拥有者²
 - Land possess-er

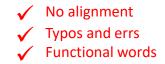
Aligned

:aspect x3/ \vec{J} Complete

:arg0 x1/ amr-unknown

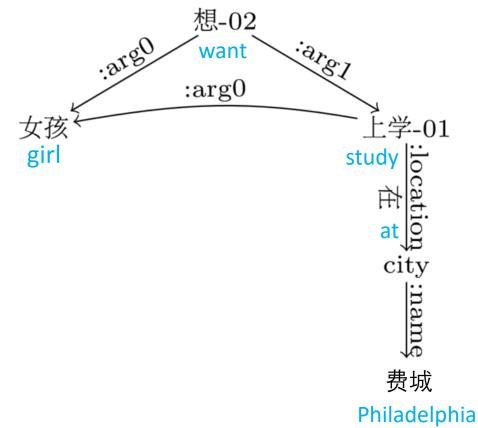
:mode x9/interrogative

:degree x5/这么 such

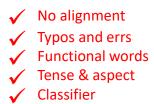

x2_x8/帮忙-01 help

:arg1 x4/我 me

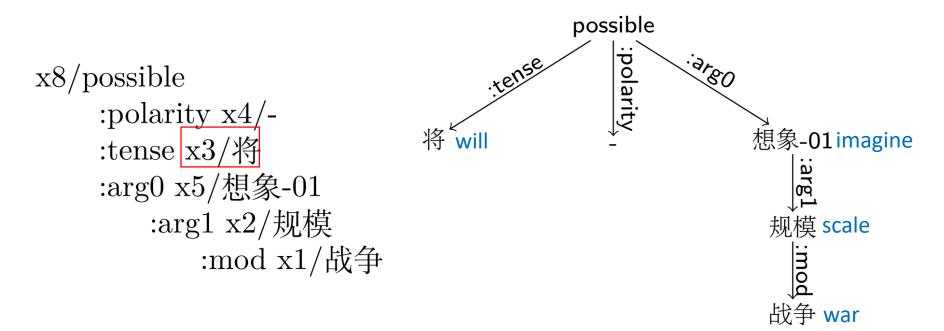
:degree x6/大 big


No alignmentTypos and errs

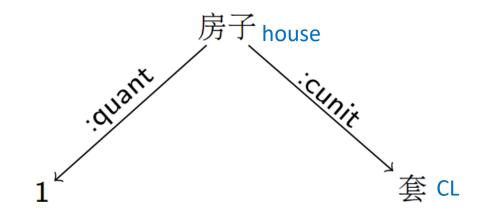
2.2. Relation-to-word Alignment


- 女孩¹ 想² 在³ 费城⁴ 上学⁵
- Girl want at Philadelphia study
- The girl wants to study at Philadelphia
- x2/想want-02

:arg0 x1/女孩girl :arg1 x5/上学 study-01 :location(x3/在at) x6/city :name x4/费城Philadelphia


2.3. Add 4 non-core relations

- tense (时)
 - •将,曾
- aspect (体)
 - •着、了、过、起来、下去
- cunit (classifier)
 - 个、只、张
- perspective
 - 他经济独立了
 - He is financially independent.


Tense

战争¹ 规模² 将³ 无法⁴ 想象⁵ war scale will unable imagine "The scale of the war will be unimaginable."

CUNIT (classifier)

(11) 一¹ 套² 房子³
a CL house
"A house"
x3/房子
:quant x1/1
:cunit x2/套

2.4. Relation of Compound Sentences

- Setting up 10 concepts to represent the discourse relations between clauses
 - and
 - causation
 - condition
 - Contrast
 - temporal
- 并列 因果 条件 转折 时序

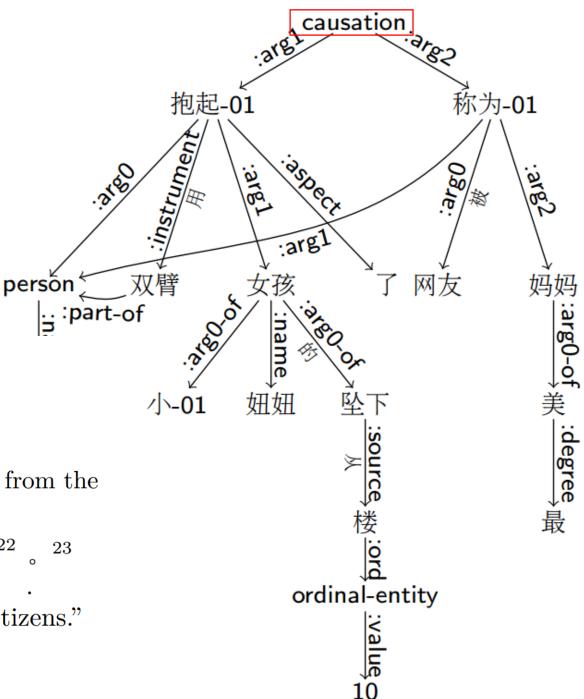
or 选择concession 让步

目的

递进

解说

- purpose
- progression
- expansion

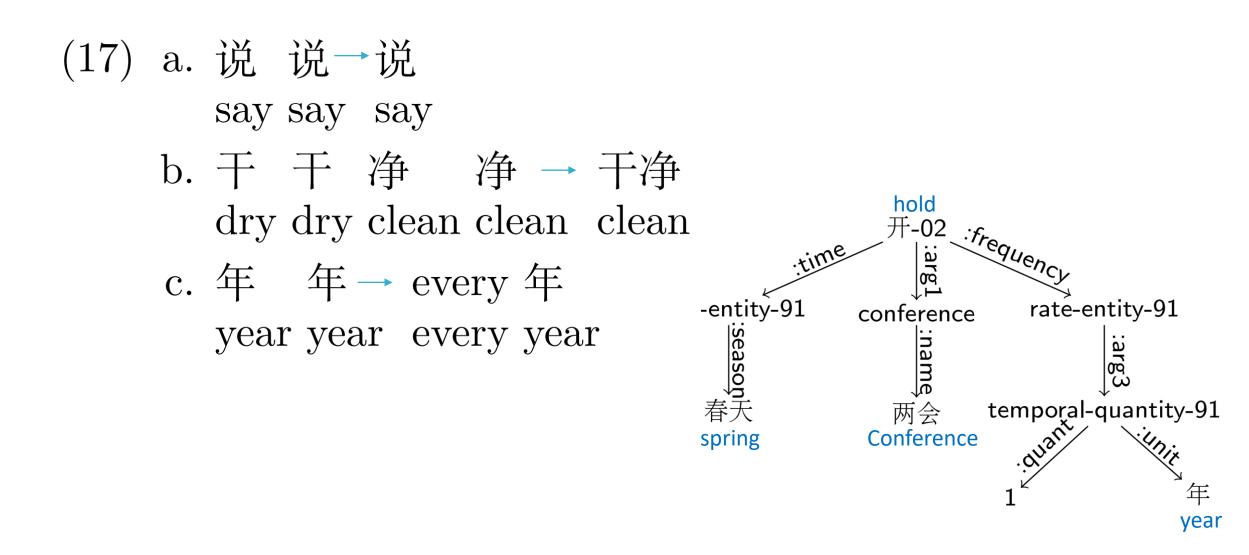

No alignment Typos and errs Functional words Tense & aspect Classifier Discourse relations

causation

- From relation to concept
 - :cause
 - Causation
 - Arg1, Arg2

(9) 吴菊萍¹ 用² 双臂³ 抱起⁴ 了⁵
Juping Wu with arms pick up ASP
从⁶ 十⁷ 楼⁸ 坠下⁹ 的¹⁰ 小¹¹ 女孩¹² 妞妞¹³, ¹⁴
from tenth floor fall DE little girl Niuniu,
"Juping Wu picked up the little girl Niuniu who fell from the tenth floor with her arms,"

 $被^{15} 网友^{16} 称为^{17} "^{18} 最^{19} 美^{20} 妈妈^{21} "^{22} °^{23}$ by netizens call "most beautiful mother". "and was called 'the most beautiful mother' by netizens."



2.5. Specifications for Chinese

Better representation

- Reduplications
 - 看看→看; 开开心心→开心; 打扫打扫→打扫
 - 年年→每年
- Split verb construction
 - 帮忙(help) → 帮了一个忙
- Serial verbs structure
 - He wants to eat the apple
- Verb-complement structure
 - 走不了→不可能走; 唱哭→ the result of "唱" is "哭"

Reduplications

Serial verbs structure

(12) $\dot{\text{D}}^1$ 着² 好³ 日子⁴ 不⁵ 过⁶ leave ASP good life not live "Do not want to settle with living a good life" x8/and and :0p1 :op2 :op1 x1/放-01 放-01 · 考 过-01 jpolarity :aspect x2/着 :arg1 x4/日子 :arg0-of x3/好-01 日子: arg0-of 好-01 E :op2 x6/过-01 :arg1 x4 :polarity x5/-

Verb-complement structure

- •走不了→不可能 走
- Go not ASP not possible go
- •他唱哭了 观众 \rightarrow the result of "唱" is "哭"
- He sing cry ASP audience
- He sings, causing the audience to cry.

3. Corpus Construction

- We annotated 10,149 sentences
 - selected from the Chinese TreeBank 8.0
 - predicate frames were extracted from Chinese PropBank 3.0
 - followed the new CAMR specifications
- Two linguistic undergraduate students
- The inter-agreement Smatch (Cai and Knight, 2013) score between the two annotators was 0.83

3.1. Predicate Dictionary

• predicate frames were extracted from the Chinese PropBank 3.0

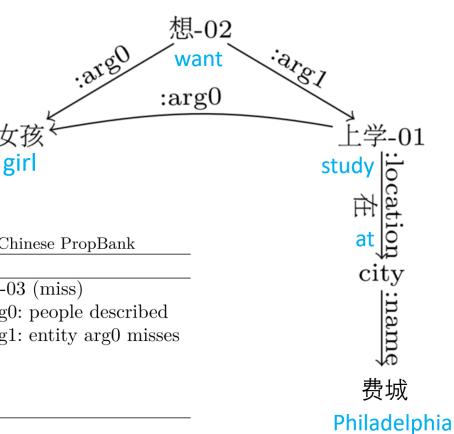


TABLE 1 Semantic roles for core arguments of *want* in PropBank and 想 in the Chinese PropBank

want	想。					
want-01	想-01 (think)	想-02 (want)	想-03 (miss)			
arg0: wanter	arg0: people described	arg0: people described	arg0: people described			
arg1: thing wanted	arg1: thoughts of arg0	arg1: thing arg0 wants	arg1: entity arg0 misses			
arg2: beneficiary						
arg3: in-exchange-for						
arg4: from						

3.2. Abstract Concepts

Type	Abstract concepts	Num		
*discourse	and, or,(*causation, *condition, *contrast, *temporal, *concession, *progression, *purpose,			
*discourse	*expansion, multi-sentence			
subjectivity	-(polarity), +(polite), possible	3		
mode	interrogative, expressive, imperative	3		
unknown	amr-unknown	1		
	monetary-quantity, distance-quantity, area-quantity, volume-quantity, temporal-			
	quantity, frequency-quantity, speed-quantity, acceleration-quantity, mass-quantity,			
quantity	force-quantity, pressure-quantity, energy-quantity, power-quantity, voltage-quantity,			
quantity	charge-quantity, potential-quantity, resistance-quantity, inductance-quantity, magnetic	26		
	-field-quantity, magnetic-flux-quantity, radiation-quantity, concentration-quantity,			
	temperature-quantity, score-quantity, fuel-consumption-quantity, seismic-quantity			
	have-concession, have-condition, be-destined-for, have-frequency, have-instrument, be-			
91 concept	located-at, have-manner, have-mod, have-name, have-part, have-polarity, have-purpose,			
	have-quant, be-from, have-subevent, include, be-temporally-at, rate-entity			
	Total	179		
	* marks new concepts added to CAMB			

* marks new concepts added to CAMR

TABLE 2List of abstract concepts used in CAMR

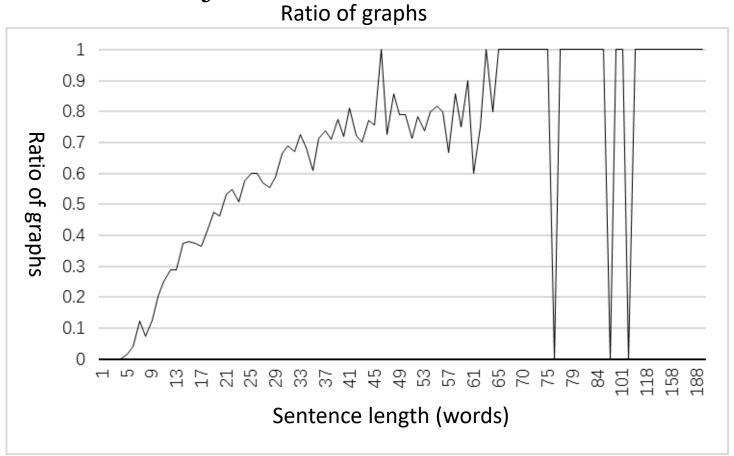
Type	Abstract concepts	Num
	thing	1
	person, family, animal, language, nationality, ethnic-group, regional-group, religious-group	8
	organization, company, government-organization, military, criminal-organization, political-party, school, university, research-institute, team, league	11
	location, city, city-district, county, local-region, state, province, country,	
	country-region, world-region, continent, ocean, sea, lake, river, gulf, bay, strait, canal, peninsula, mountain, volcano, valley, canyon, island, desert, forest, moon, planet, star, constellation	29
Named Entity (108)	facility, airport, station, port, tunnel, bridge, road, railway-line, canal, building, theater, museum, palace, hotel, worship-place, market, sports-facility, park, zoo, amusement-park	20
	event, incident, natural-disaster, earthquake, war, conference, game, festival	8
	product, vehicle, ship, aircraft, aircraft-type, spaceship, car-make, work-of-art, picture, music, show, broadcast-program	12
	publication, book, newspaper, magazine, journal	5
	naturalobject	1
	molecular-physical-entity, small-molecule, protein, protein-segment, amino-acid,	
	macro-molecular-complex, enzyme, rna, pathway, gene, dna-sequence, cell, cell-line, organism, disease	15
	law, treaty, award, food-dish, dynasty	5

3.3. Relations

TABLE 3 The full set of semantic relations used in CAMR :accompanier, :age, *:aspect, :beneficiary, :cause , :compared-to, :consist-of, :cost , *:cunit, :degree, :destination, :direction, :domain, :duration, :example, :extent, :frequency, :instrument, :li, :location, :manner, :medium, :mod, :mode, :name, :ord, :part, :path, *:perspective, :polarity, :polite, :poss, :purpose, :quant, :range, :source, :subevent, :subset, :superset, *:tense, :time, :topic, :unit, :value *:dcopy

* marked the new relations added to CAMR

4. Statistics and Analysis


- Basic information
- Graph ratio
- Details of Concepts and Relations
- Non-projective Radio

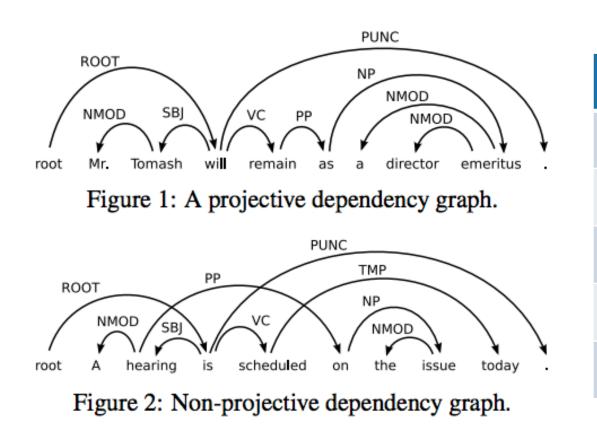
4.1. Basic Statistics

AMR Corpus	sentences	graphs	% graphs
Eng_bolt	1,062	722	0.68
Eng_dfa	1,703	898	0.53
Eng_mt09sdl	204	137	0.67
Eng_proxy	6,603	2,954	0.45
Eng_xinhua	741	423	0.57
Eng_little prince	1,562	663	0.43
Eng_total	11,875	5,797	0.49
Chs_little prince	1,562	576	0.36
Chs_CTB1	6,923	3,360	0.48
Chs_CTB2	10,149	4,741	0.47

4.2. Graphs

- 4,741 sentences(47%) are graphs
- Others sentences are just trees

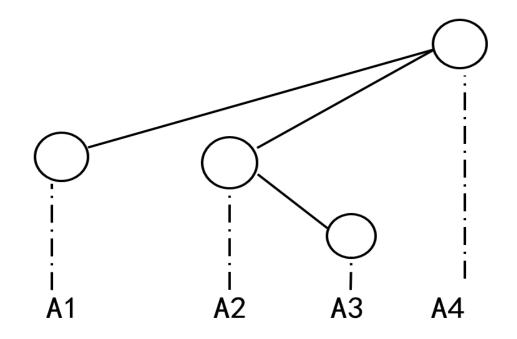
4.3. Details of Concepts and Relations

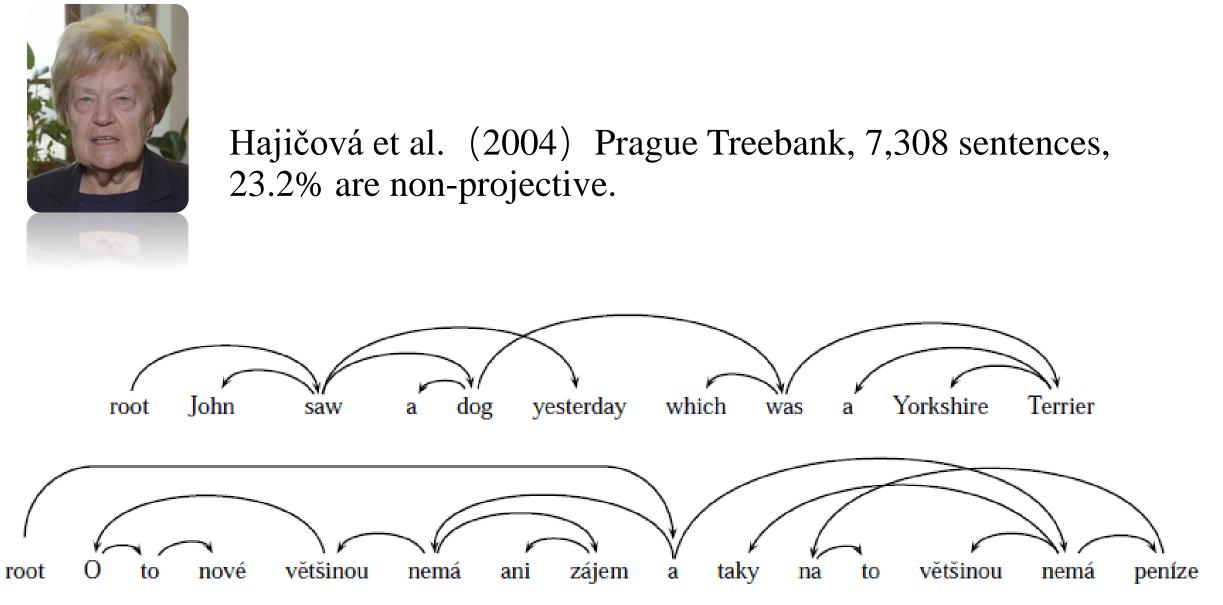

TABLE 6 Basic statistics of the CAMR corpus							
sentences	words	concepts	relations	re-entrancies	non-tree graphs	abstract concepts	sentences with abstract concepts
$10,\!149$	$227,\!661$	$195,\!282$	$228,\!410$	$9,\!449$	4,741	$26,\!269$	9,039
					(46.71%)		(88.95%)
characters	words	concepts	relations	re-entrancies	concrete	abstract	words aligned
	per	per sent	per sent	per sent	concepts	$\operatorname{concepts}$	to relations
	sent				per sent	per sent	
347,750	22.43	19.24	22.50	1.99	16.35	2.88	29,533 (12.97%)

The relations marked by prepositions

Р	:arg1	:loca- tion	:arg2	:source	:arg0	:time	:direc- tion	:arg3	:bene- ficiary	:instru- ment	:pur- pose
在at	204	431	67	1	20	64	18	2	0	0	2
把take	591	0	10	0	28	0	0	0	0	1	0
从from	28	5	25	153	7	8	0	1	77	1	45
给give	45	0	68	0	8	0	1	0	0	0	6
对to	39	0	12	0	0	0	5	101	11	0	1
向toward	44	0	34	0	1	0	62	3	16	0	1
被by	35	1	3	0	113	0	0	2	0	0	0
到to	48	13	26	0	0	0	0	10	0	0	0
用using	6	0	9	0	8	0	0	0	0	93	0
为for	24	0	18	0	2	0	0	0	41	0	8

4.4. Non-Projective Trees


• Non-projective Trees 3,208 (31.6%)


Туре	%
Modal word	52.37
Split word	28.49
Topicalization	13.34
Movement	5.14
Other	5.33

History

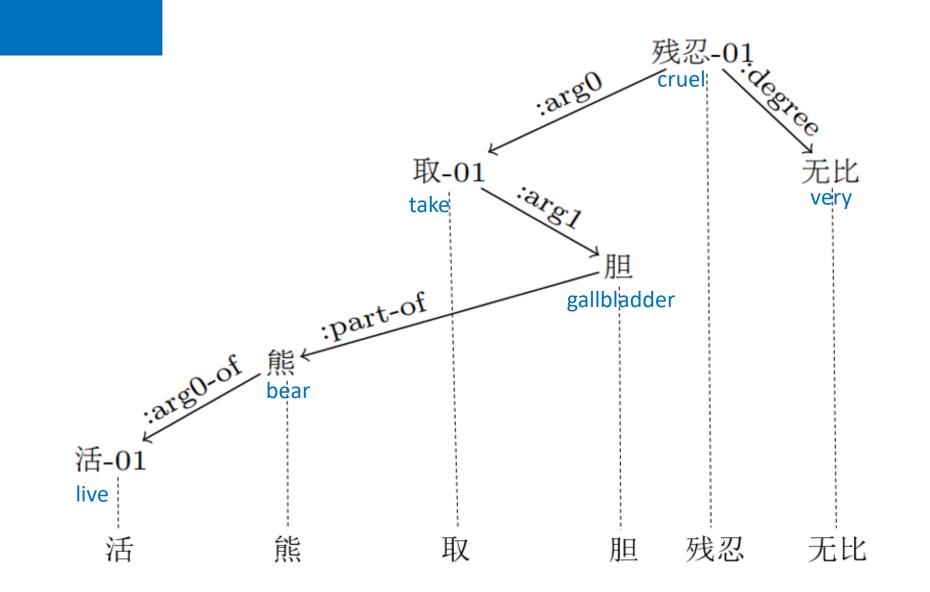
- Tesnière(1959)
- Hays(1964), Robinson(1970): Projective

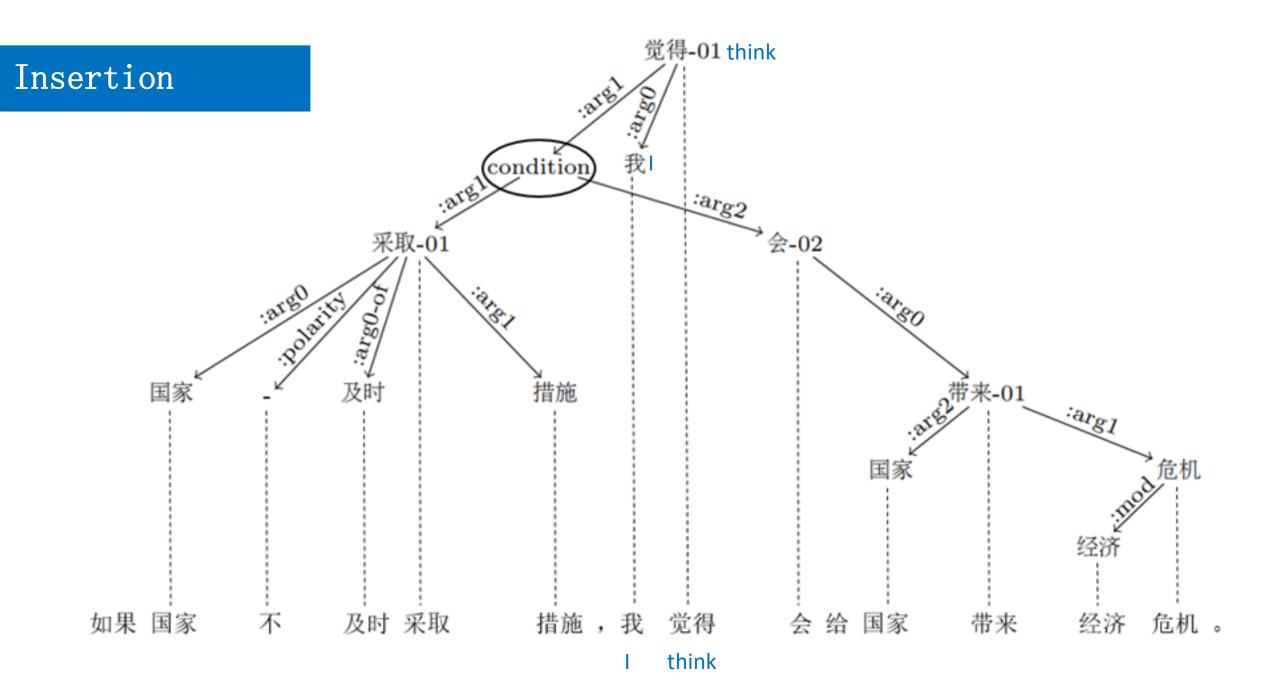
He is mostly not even interested in the new things and in most cases, he has no money for it either.

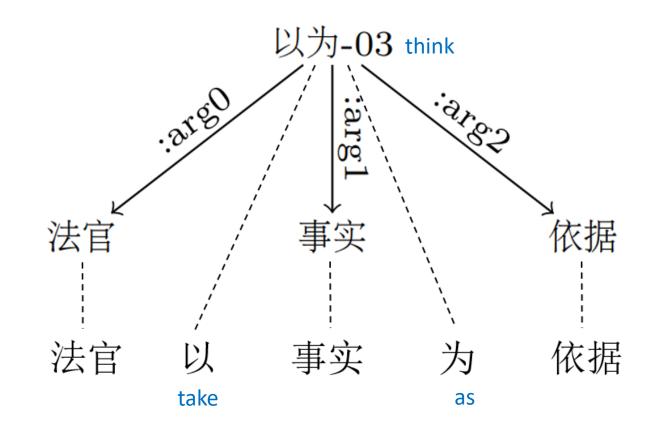
Havelka (2007) investigates 12 languages

McDonald (2005) Non-projective Dependency Parsing using Spanning Tree Algorithms

Language	Non-Prj Ratio
Spanish	1.72
Japanese	5.29
Bulgarian	5.38
Swedish	9.77
Arabic	11.16
Turkish	11.6
Danish	15.63
Poruguese	18.94
Slovene	22.16
Czech	23.15
German	27.75
Dutch	36.44




Zeman (2014) 29 languages, Non-proj arc ratio


Language	% NonPrj. Arc	Language	% NonPrj. Arc	Language	% NonPrj. Arc	
Arabic	0.37	Finnish	0.51	Portuguese	1.31	
Basque	1.27	German	2.33	Romanian	0.00	
Bengali	1.08	Greek(el)	1.17	Russian	0.83	
Bulgarian	0.38	Greek	19.58	Slovene	1.92	
Catalan	0.00	Hindi	1.12	Spanish	0.00	
Czech	1.91	Hungarian	2.90	Swedish	0.98	
Danish	0.99	Italian	0.46	Tamil	0.16	
Dutch	5.41	Japanese	1.10	Telugu	0.23	
English	0.33	Latin	7.61	Turkish	5.33	
Estonian	0.07	Persian	1.77	Chinor		

Chinese ?

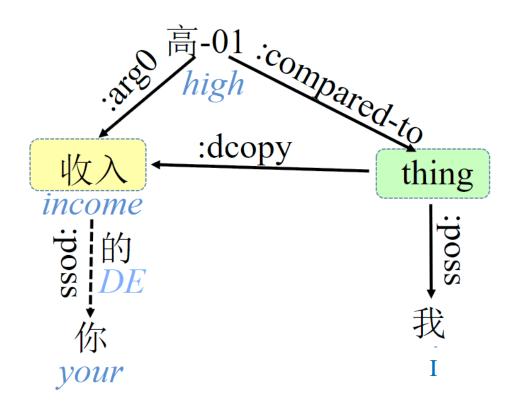
Part-of

4.5. Summary

- Non-projective Ratio: 31.62%
- Simple or Complex?
- Projective Tree → Non-projective Tree → Graph → AMR
- Better description/representation for Chinese
- Parsing F-score
 - Chinese: Chuan et al.(2018) 0.587; Wu et al.(2019) 0.61
 - English: Lyu(2018) 0.74
- Linguistics & NLP

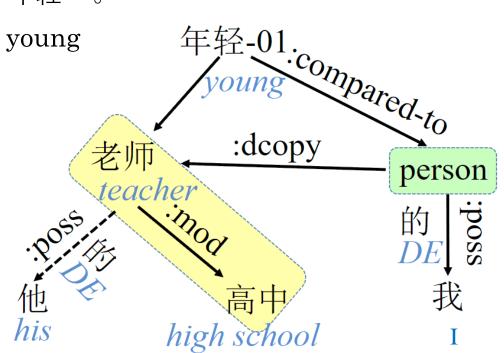
5. Conclusions and Future Work

- Conclusions
 - Why graphs instead of trees?
 - Argument sharing
 - Could the concepts and relations on an AMR graph be aligned back to original words?
 - Yes!
 - Is AMR universal? Not yet, but close.
 - Could it be applied to other languages?
 - Chinese is OK.
 - Is there something new discovered by Chinese AMR?
 - Relation-to-word alignment, Nonprojective,


5.1. Additional Work

- Ellipsis
- Predicate Dictionary
- Construct
- Discourse

Ellipsis


- :dcopy
 - Same word, different concepts
 - (8) 你¹ 的² 收入³ 比⁴ 我⁵ 高⁶
 you DE income than I high
 "Your income is higher than mine."

x6/高-01 :arg0() **x3/**收入 :arg1(x2/的) x1/你 :compare-to(x4/比) **x8/thing** :poss() x5/我 :dcopy() **x3_s/**收入

Not root, not subtree, but part of a tree

- He DE high school teacher than I DE your
- His high school teacher is younger than mine.
- :dcopy x3_x4/高中老师
- This is an issue for dependency grammar.

5.2. Rebuild the Predicate Frames

- CPB frame files
 - Only frames, no full senses
- Refined dictionary linked to HowNet
 - 8,470 words
 - 14,389 senses
 - 10,800 frames
 - 14,549 items
- New words(OOV)
 - •人艰不拆,给力,妥存
 - 排火车票

5.3. Discourse

- Annotation Toolkit is hard to design.
- For news data, the sentences are too long.
- Dialogue is much more difficult
 - We tried some small dialogues
 - Ellipsis & Co-reference
 - Literal meaning VS actual meaning in context

5.4. Chinese Constructions

- Construction
 - •张三长,李四短
 - Jack long, Tom short.
 - Criticize Jack and Tom.
- The Chinese Construction Database developed by Peking University
 - 1,005 Constructions
- After AMR annotation, about 61% could be represented by AMR

Future Work

- More Chinese AMR
 Corpus (LDC 2019.04)
- A better theory of semantic representation
- Chinese AMR parser
- Better dictionary

STAY CONNECTED

Thank You! **Bin** Li Email: libin.njnu@gmail.com *IQSS, Harvard University* School of Chinese Language & Literature Nanjing Normal University

Discussion

- Limitation of dependency structure
 - Lack of phrase
- Discourse annotation
- UMR (Universal Meaning Representation)
- Annotation inter-agreement
- Parsing on graphs

- Bin Li, Yuan Wen, Li Song, Weiguang Qu, Nianwen Xue. Building a Chinese AMR Bank with Concept and Relation Alignments. Linguistic issues in Language Technology, Vol.18, 2019.(PDF)
- WU Taizhong, GU Min, ZHOU Junsheng, QU Weiguang, LI Bin, GU Yanhui. Chinese AMR Parsing using Transition-based Neural Network. Journal of Chinese Information Processing. 2019, 33(4): 1-11.
- Bin Li, YuanWen, Lijun Bu, Weiguang Qu, Nianwen Xue. Annotating the Little Prince with Chinese AMRs. Proceedings of LAW X-The 10th Linguistic Annotation Workshop(LAW-2016), Aug 11, 2016, Berlin, Germany:7-15.
- LI Bin, WEN Yuan, SONG Li, BU Lijun, QU Weiguang, XUE Nianwen. Construction of Chinese Abstract Meaning Representation Corpus with Concept-to-word Alignment. In Journal of Chinese Information Processing, China, 2017(6)
- Yihuan Liu, Bin Li, Peiyi Yan, Li Song, Weiguang Qu. Ellipsis in Chinese AMR Corpus. Proceedings of the First International Workshop on Designing Meaning Representations, pages 92–99. Florence, Italy, August 1st, 2019.
- DAI Yuling, LI Bin, DAI Rubin, FENG Minxuan, QU Weiguang. Representation and Analysis of Chinese Function Words Based on Abstract Meaning Representation with Relation Alignment. CCL(2019)
- Tong Huang, Bin Li, Peiyi Yan, Yuling Dai, Weiguang Qu. Chinese Constructions Annotation and Analysis Based on the Abstract Meaning Representation. CCL(2019)
- Li Song, Yuan Wen, Sijia Ge, Bin Li and Weiguang Qu. An Easier and Efficient Framework to Annotate Semantic Roles: Evidence from the Chinese AMR Corpus(CLSW2019)
- Bin Li, Junsheng Zhou, Weiguang Qu. Research on Non-projective Structure Based on the Chinese Abstract Meaning Representation Corpus. Journal of Chinese Information Processing, 2018, 32(12).
- CHENG Ning, LI Bin, GE Sijia, HAO Xingyue, FENG Minxuan. Integration of Automatic Sentence Segmentation and Lexical Analysis of Ancient Chinese based on BiLSTM-CRF Model. CCL(2019)
- Huidan Xu, Siyu Chen, Jingjing Cai, Lin Cao, Chen Wan, and Bin Li. The Construction and Statistical Analysis of Pre-Qin Ancient Chinese WordNet. (CLSW2019)