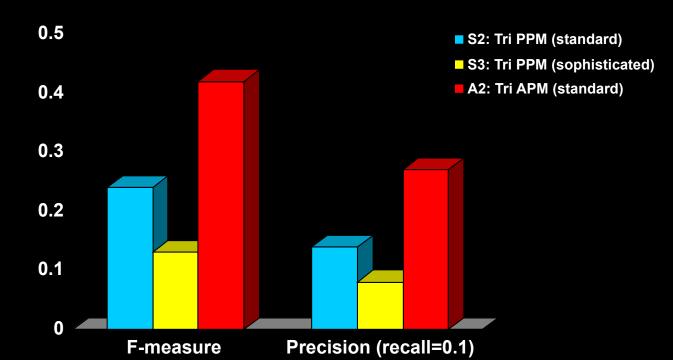
Sociolinguistics and Human Language Technologies

Or why we all need large data sets, automatic tools and sharing!

Thesis

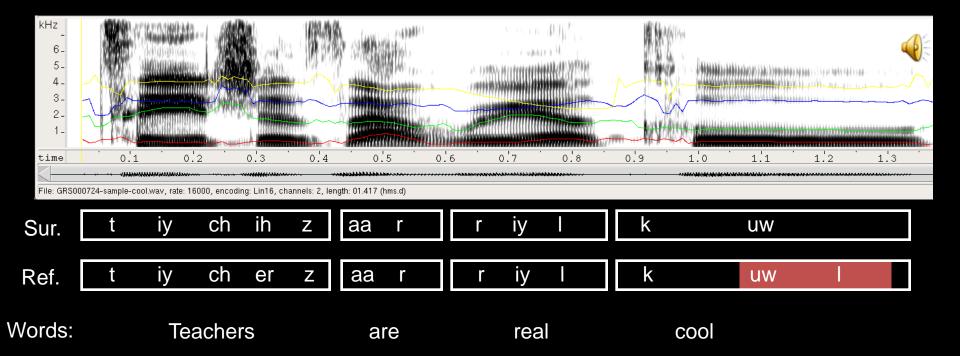
- LDC and others collect LARGE data sets to drive speech technology research (LID, ASR, DID, etc)
- LARGE =
 - Hundred/Thousands of hours of data per language/dialect
 - Hundreds/Thousands of speakers
 - E.g. mixer, fisher, HUB4-5, etc
- Many of the technologies that have been developed could support dialect/variation research!
 - Analysis of large data (word usage, pronunciation, etc.)
 - Measurement of speaker/dialect variability (intra and inter)
 - Measurement of channel affects

Case 1 British English vs. American English


- WSJ (US English): 200+ hours of read speech
- WSJ-CAM0 (British): 90+ hours of read speech
- 200+ speakers
- Use ASR techniques to learn pronunciation models

Literature	Proposed System	
Rule	Learned Rule	Prob
[ae] -> [aa] /_ [+fric, -voiced] (trap-bath split)	[ae] -> [aa] /_ [+fric, -voiced, +front]	0.84
	[ae] -> [aa] / [-voiced]_ [+fric, -voiced, -front]	0.52
[r] -> ø / _ [+cons] (R Dropping)	[er] _{ins} -> [ah] / [+vowel] _ [+affric]	1.0
	[er] -> [ah] / I _ [+affric]	1.0

We rediscover known rules AND automatically measured prevaler


Case 2 AAVE/non-AAVE variability

- StoryCorps: oral history collect of AAVE/non-AAVE talkers
- Simultaneous collection in 15 US cities for NPR
- 300+ speakers, 400+ hours / dialect
- Automatically identify and retrieve instances of AAVE specific transformations (21 from Wolfram 2005)

Mining data for analysis Using the model to explore your corpus

Learned rules: uw-[l]: uw-l

This is just the beginning

With more data we will be able to:

- 1. Characterize in-dialect speaker variability
- 2. Measure acoustic variability that is too subtle for categorical labeling (see [Shen 09] and [Chen/Shen 11])
- 3. Learn rare transformations that are difficult to observe in small data sets. [Chen 10] proposed 700+ AAVE-specific pronunciation transforms
- 4. Speed data analysis: find regions of dialectal difference using automatic methods