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Fundamental frequency (F0) has long been treated as the physical definition of "pitch" in phonetic analysis. 
But there have been many demonstrations that F0 is at best an approximation to pitch, both in production 
and in perception: pitch is not F0, and F0 is not pitch. Changes in the pitch involve many articulatory and 
acoustic covariates; pitch perception often deviates from what F0 analysis predicts; and in fact, quasi-
periodic signals from a single voice source are often incompletely characterized by an attempt to define a 
single time-varying F0. In this paper, we find strong support for the existence of covariates for pitch in 
aspects of relatively coarse spectra, in which an overtone series is not available. Thus linear regression can 
predict the pitch of simple vocalizations, produced by an articulatory synthesizer or by human, from single 
frames of such coarse spectra. Across speakers, and in more complex vocalizations, our experiments 
indicate that the covariates are not quite so simple, though apparently still available for more sophisticated 
modeling. On this basis, we propose that the field needs a better way of thinking about speech pitch, just as 
celestial mechanics requires us to go beyond Newton's point mass approximations to heavenly bodies.
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1. INTRODUCTION

Pitch, as defined by the American National Standard on Acoustical Terminology (ANSI/ASA S1.1-
2013),33 is the attribute of auditory sensation by which sounds are ordered on the scale from low to high.
Pitch describes how human ears and brains interpret acoustic signals. Since it is a perceptual attribute, in
order to characterize pitch in a quantitative fashion, researchers have been using fundamental frequency
(F0) as the physical surrogate of pitch, where F0 refers to the greatest common divisor of all the involved
frequencies of harmonics.

It is widely recognized that the key predictor of the pitch of a sound is its periodicity. The definition of
F0 has an assumption that overtones are perfectly periodic in the frequency domain, and likewise acoustic
signals are perfectly periodic in the time domain. However, this is not necessarily true in practice. For
example, all string instruments produce overtones that are slightly sharper than ideal harmonics, due to
effective shortening of the string at higher frequencies.19, 36 The minor inharmonicity makes the sound
waveforms not perfectly periodic. But since the deviation is only a few percent, the waveforms are called
quasi-periodic.

So is human voice. From an articulatory point of view, F0 is the frequency at which vocal folds vibrate
in voiced sounds. Voiced speech signals consist of periodic signals and random perturbations. The random
component is mostly jitter and shimmer, which are quantified as the cycle-to-cycle variations of F0 and
amplitude.32 Human voice is also deemed quasi-periodic with small perturbations.

Given the nature of musical sound and human voice, the notion of F0 does not entirely apply to sound in
the real world. Researchers in the past have investigated this phenomenon; e.g., Shepard29 discusses Shepard
tone illusion, suggesting that perceived pitch can not be adequately represented by a purely rectilinear scale
because of the circularity of pitch space.3, 5, 6 A substantial number of literature has discussed the impact
of voice quality on facilitating pitch perception. Swerts and Veldhuis30 and Honorof and Whalen8 is early
work that presented the potential dependency of F0 on voice quality. Lee,16 Allen and Oxenham,2 Kuang
and Liberman12, 13, 15 and Kuang et al.11 further discover that changes in spectral shape affect people’s
judgements of relative pitch height. Besides spectral slope, Kuang and Liberman14 suggests that vocal fry,
as another voice quality cue, would bias listeners to perceive a lower pitch. More generally, phonation is an
important correlate of tone perception for various tonal languages.4, 7, 37, 38 There are abundant other non-f0
cues for pitch perception, including sound intensity21 and temporal envelope,9 to name a few.

On the other hand, pitch does not exclusively depend on F0 in production. Zhang40 proposes that
vocal folds tension plays an important role in the control of pitch in voice production. Similarly, Titze35

analyzes the correlation between different types of phonation and pitch production. Later, Roubeau et
al.26 and Kuang10 show that voice quality is closely associated with pitch production in both speaking and
singing voices. Specifically, lowest pitch production is associated with creaky voice, while the highest pitch
production is associated with falsetto or whistle. Rhee et al.25 also proves that voice quality helps the
acquisition and production of Mandarin tones.

It is unsurprising that changes in pitch, as we will point out in this paper later, have covariates other
than changes in the spacing of overtones, or the spacing of repetition in the time domain. Prior work
has provided sufficient evidence, either implicitly or explicitly, of this argument. Ryant et al.27, 28 show
that highly accurate Mandarin tone classification is possible using only MFCC features, when both F0 and
overtone series are absent. Lin et al.17 and Zhang et al.39 discuss the task of Mandarin tone classification
and pitch range estimation respectively, but both work found that a model achieves better results with the
addition of spectral features, compared to the one that uses prosodic features only.

In order to better validate and understand the existence of latent information related to pitch in spectral
features, we design experiments that track pitch on acoustic data where only F0 is varied. We study both
synthetic and real human voice data. The goal is to see whether predicting F0 estimates from spectral
features only is possible, and how difficult it would be. We believe that the results will suggest a promising
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direction for better modeling prosodic features in human voice.

2. HUMAN STIMULI

A. DATA COLLECTION

For the human experiments, we recorded two human subjects (one male and one female). They were
instructed to sinusoidally vary pitch for three vowels: /A/, /æ/ and /i/. For each vowel, subjects repeated
this process multiple times until at least 5 minutes of usable utterances had been produced. Subjects were
encouraged to vary the period, pitch range, and starting frequency of their oscillations from utterance to
utterance, but to be careful to not vary these parameters within an utterance. Subjects were recruited from the
student population at the University of Pennsylvania (age range: 20-30 years) and neither had professional
voice training.

Table 1: Statistics of pitch from human stimuli.

Subject Property max min avg std

Female

Period (s) 1.17 0.40 0.5838 0.1605
Pitch (Hz) 747.07 67.87 300.80 113.37
Duration (s) 20.39 5.15 8.24 2.47

Pitch range (Hz) 192.53 20.07 49.90 39.71

Male

Period (s) 1.32 0.40 0.7223 0.2375
Pitch (Hz) 363.02 64.37 149.38 43.39
Duration (s) 20.59 3.63 12.04 4.23

Pitch range (Hz) 85.90 10.01 24.66 17.29

Table 1 shows some major statistics of the collected stimuli, where Pitch is the F0 estimate acquired
from RAPT algorithm31 as implemented in the Speech Signal Processing Toolkit (SPTK).1 The following
parameters are used:

• wind dur = 10 ms

• min f0 = 60 Hz

• max f0 = 800 Hz for female, 400 Hz for male

In the following experiments, we treat F0 estimate from RAPT as gold pitch. Period is the period
of sinusoidal oscillation produced by subjects. For example, the period of sinusoid shown in Fig. 1 is ap-
proximately 0.8 seconds. Duration is the duration of one utterance, and Pitch range is the difference
between the highest and lowest pitch in each period. Figure 2 gives a more detailed distribution of pitch
values and period. As expected, the pitch range of the female speaker is more widely spread out; while the
male speaker generally produces slower-varying vocalizations.

B. ANALYSIS

Figure 1 plots the F0 estimates, spectrogram, and 40-D Mel-frequency cepstral coefficients (MFCCs)
(Section 3.1 for details) corresponding to one of the female /A/ productions. The spectrogram is plotted
using a 20 ms long Hanning window. Dynamic range is set to 45 dB, and pre-emphasis is 0 dB/Octave. For
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Figure 1: An example production of /A/ from the female speaker. Top: F0 estimate from RAPT. Middle: Plot of
cepstral coefficients (Section 3.1 for details). Bottom: Log-power spectrum.

Figure 2: Distribution of pitch range (left) and period (right) for each combination of speakers and vowels.

this production, the oscillation in F0 is clearly reflected in both the spectrogram and the MFCCs, particularly
in the higher coefficients. Similar patterns are revealed in productions of the other vowels and for the male
speaker.

Given the interesting patterns that emerged from visual inspection of MFCCs for isolated utterances,
we compute the Pearson’s correlation23 between F0 and each dimension of cepstral coefficients, plotted in
Fig. 3. While all correlations are statistically significant, the correlations are particularly strong for 10th-28th
cepstral coefficients. This pattern is even stronger for the female speaker.
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Figure 3: Pearson correlation between F0 and each dimension of cepstral coefficients. The correlation is obtained
from all the vowel stimuli collected from each speaker.

3. EXPERIMENTS

A. METHOD

Task – Each type of stimuli are partitioned into training and test set with an 80/20 split. The task is
to predict time functions of F0. In order to alleviate the affect of different pitch ranges from different
speakers (as shown in Fig. 2), F0 values are transformed from Hz to semitones using the 5th percentile
of each speaker as the base.22 Semitones that are transformed from gold pitch are referred to as gold
semitones in the results. We do a pairwise combination of training and test sets, whose results constitute
a 6 ⇥ 6 matrix shown in Fig. 4(a). The number that each cell represents is the average of 10 runs, and in
each run the training/test split is different. This is to reduce the impact of randomness, as we have a fairly
small dataset.

Acoustic features – The collected recordings are resampled to 16kHz, and stored as mono 16-bit audio.
Then we use 40-D MFCCs as the features of the input acoustic signals. MFCC coefficients are extracted
using librosa18 with a 10 ms step size and a 35 ms analysis window. No overtone series is explicitly
present in this representation.

Model – We utilize linear regression without using an L2 loss as implemented by the LinearRegression
class in sklearn24 for all regression tasks.

Evaluation – Root-mean-square error (RMSE) and Pearson’s R are used as evaluation metrics to measure
the difference and correlation respectively between the ground truth and predicted semitone values.1

1The code and data are publicly available at https://github.com/dannima/InferringPitch
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(a) Train on one vowel one speaker (b) Train on all the vowel stimuli

Figure 4: Pearson correlation coefficient between the predicted and gold semitone values for the experiments
involving human data. Each cell represents one train/test set combination with the y-axis defining the training
set and the x-axis the test set. Darker/lighter colors indicate stronger/weaker correlation. (a) Training on a single
vowel from a single speaker. (b) Training on all vowels from either a single or both speakers. Abbreviations: F:
female speaker, M: male speaker, 4: result in cell is not statistically significant (p > 0.05)

(a) Train and test on the same speaker. (b) Different amounts of training data. (c) Train and test on different speakers.

Figure 5: Pitch prediction of an excerpt of the vowel /æ/ stimuli from the female speaker. (a) Predicted (pred) vs
gold (RAPT) semitones of a sample utterance. (b) The RMSE and Pearson correlation between the gold pitch and
predicted pitch based on the amount of training data. Full training data is 4 minutes. (c) Same as (a), except that
the linear regression model is trained on the same vowel stimuli from the male speaker, and tested on the female
speaker.

B. RESULTS

Figure 5 shows the most salient results of the experiments. When training and testing on the same vowel
stimuli from the same speaker, even with such a small amount of training data and simplest regression
model, MFCC spectral parameters are able to predict the pitch from real human voice. The predictions in
Fig. 5(a) roughly fit the gold pitch tracks, except being a little jagged in peaks and troughs.

More interestingly, if the training data is reduced to 10%, RMSE remains almost the same, meaning that
around 25 seconds of MFCC features is enough for the model to predict the pitch well. More variations
of training data and its corresponding performance can be found in Fig. 5(b). Knowing that RMSE is
greatly affected by the pitch range of training data, we also plot Pearson’s r between the gold pitch and
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the prediction. The conclusion still holds. This is strong evidence of the argument that pitch has spectral
covariates other than the overtone series.

But Fig. 5(c) indicates that the covariates are not that simple. The linear regression model struggles to
recover F0 if tested on different kinds of materials. Additional experiments show that by adding contexts
to MFCC features and change to a more complicated model, such as multi-layer perceptron regressor, will
improve the performance in both inter-speaker and cross-speaker settings. It is plausible that compared to
linear models, MLP can better extract prosodic information from MFCC features.

4. SYNTHETIC STIMULI

We replicate the same task on synthetic data and it yields similar results. The conclusion is even stronger
– It is possible to recover much more complicated oscillations of pitch using the combination of single-frame
MFCCs and a linear regression model. Below are the details of experiments and findings.

A. DATA GENERATION

We generate synthetic data using Pink Trombone342, an articulatory synthesizer by varying the F0 of the
glottal wave while keeping all other control parameters fixed. Five-second duration utterances are generated
by sampling the non-pitch control parameters, and the F0 contour is determined according to one of two
mechanisms:

Sinusoidal stimuli. F0 of the glottal wave is varied according to a sinusoid with the following form:

F0 = 172 ⇤ sin (↵ ⇤ t+ �) + 232 (1)

where ↵ 2 [1.7227, 8.6133] and � 2 [�⇡
2 ,

⇡
2 ]. The resulting F0 values lie in the range [60 Hz, 404 Hz].

Both ↵ and � are randomly selected within respective ranges. Therefore, each of the stimuli has different
pitch range, period and phase shift to increase the diversity of inputs.

Complicated stimuli. F0 is generated as the superposition of two sinusoidal oscillations At and !t:

At = sin (↵1 ⇤ t+ �1) (2)

!t = cos (↵2 ⇤ t+ �2) (3)

F0 = 172 ⇤At ⇤ sin (!t ⇤ t+ �) + 232 (4)

where ↵1,↵2 2 [0.8613, 3.4453] and �1,�2,� 2 [�⇡
2 ,

⇡
2 ].

In order to simulate the settings in human voice, we generate 60 five-second long audio files for each
kind of stimuli, resulting in five minutes worth of synthetic data for each mechanism. Then they are divided
into training/test set with an 80/20 split as well. All the other experimental settings, including features,
model, and task, are the same as described in Section 3.1.

B. RESULTS

Two samples of the regression results are shown in Fig. 6. Results in Fig. 6(b) are surprisingly good. A
simple linear regression model is able to mostly recover the intricate shape of the input.

In order to have a quantitative assessment of the performance, Table 2 lists the RMSE of the training
and test set for the synthetic pitch prediction task. Much to our surprise, errors of different kinds of stimuli
are close. It is reasonable to hypothesize that, regardless of the complexity of input signals, spectral features
contain enough information to predict pitch.

2Specifically, using the following Python re-implementation: https://github.com/dkadish/pynktrombone
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Table 2: RMSE of synthetic pitch prediction.

Stimuli Training Test

Sinusoidal 3.079 2.733
Complicated 2.592 2.364

(a) Sinusoidal stimuli of pitch (b) Complicated stimuli of pitch

Figure 6: Synthetic stimuli from Pink Trombone and the predicted pitch.

5. DISCUSSION

A. MEASURE OF PITCH

In this study, we use F0 as the ground truth of pitch, despite pointing out that F0 and pitch are not exactly
the same. We argue that the claim should be orthogonal to how pitch is represented in the experiments. F0
is used because it is closely correlated with pitch, and it is also one of the cheapest measures of pitch to
obtain. This work shows that F0 can be (mostly) recovered solely based on MFCCs, without the presence
of overtone series. The results are sufficient enough to corroborate the covariation between spectral features
and pitch.

B. COMPLICATED COVARIATES

The success of single-frame MFCC features predicting pitch is unexpected. Experiments presented so
far provide solid evidence of the existence of covariates. But many aspects of the covariates remain obscure.
We are particularly interested in the reason for performance degradation in Fig. 5(c).

We explore more diverse experimental settings in Fig. 4 to seek an answer. Training and testing on
vowels produced by the same speaker obviously work better than testing on vowels produced by a different
speaker. But it is also observed that training on both speakers can mitigate disadvantages in cross-speaker
testing.

Additionally, pairs of vowels that are located closer in IPA vowel chart, i.e., have similar articulatory
features, yield better results when predicting pitch. For example, within the same speaker, models trained
on /A/ have better performance when testing on /æ/ than on /i/.

The failure in Fig. 5(c) could be due to the lack of training data, but a more interesting hypothesis
is not ruled out – Covariates are not simple in human speech. There might be higher-order interactions
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among properties of spectra regarding speakers, recording conditions, phonetic contexts etc. We defer more
investigation of this hypothesis for future research.

C. BETTER REPRESENTATIONS OF PITCH

The existence of covariates also encourages researchers to find something other than F0 to describe
pitch. An ideal representation of pitch would address current concerns of pitch tracking. It would not suffer
from frequent doubling/halving errors.20 And it should be homomorphic to human perception. Existing
pitch tracking methods have the problem that a minuscule change in the input can cause substantial change
in the output. The lack of continuity is generally not favorable for the interpretability of a representation.

Currently, the spiral properties of pitch and human auditory illusions introduce all the complication of
representing pitch gracefully. In the future, we will work more in the direction of better modeling prosodic
features.

6. CONCLUSION

This paper shows a surprising phenomenon that coarse spectral representations are able to infer pitch
without the presence of overtone series, by using even the simplest form of regression models. Therefore,
the results present a strong support for the existence of covariates for pitch in coarse spectra. We validate the
argument by experimenting on both human voice and synthetic articulations. And we further discover that,
the covariates might be in a complex form and are affected by speakers and phonetic contexts. Altogether,
this study provides a further understanding of prosodic features, and suggests a future research direction of
better characterizing speech pitch.
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