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Objective: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called

Betacoronavirus

COVID-19, has caused a pandemic which has swiftly involved the entire world and raised great public
health concerns. The scientific community is actively exploring treatments that would potentially be

Chloroquine / therapeutic use*

effective in combating COVID-19. Hydroxychloroquine has been demonstrated to limit the replication
of SARS-CoV-2 virus in vitro. In malarial pandemic countries, chloroquine is widely used to treat

Clinical Trials as Topic
malaria. In malarial non-pandemic nations, chloroquine is not widely used. Chloroquine and

Coronavirus Infections / drug therapy*

hydroxychloroquine share similar chemical structures and mechanisms of action. The aim of this study
was to indirectly investigate the efficacy of chloroquine and hydroxychloroquine for the treatment of

st , : , _ Humans
COVID-19 by determining the prevalence of COVID-19 in malaria pandemic and non-pandemic ) )
Hydroxychloroquine / therapeutic use*

nations. We sought evidence to support or refute the hypothesis that these drugs could show efficacy

in the treatment of COVID-19. .
Pandemics

Materials and methods: We reviewed in vitro studies, in vivo studies, original studies, clinical trials,
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Pneumonia, Viral / drug therapy*

and consensus reports, that were conducted to evaluate the antiviral activities of chloroquine and
hydroxychloroquine. The studies on “COVID-19 and its allied treatment were found from World Health

Figure 1. An Example of Biomedical Literature Semantic Indexing Problem.
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IVERSITY INTRODUCTION
What is it used for?

1. Document Categorization

2. Knowledge-base Construction
3. Search Engine

4. Drug Discovery

5. COVID-19 Q&A System

6. More...
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Z xtreme Multi-Label Classification (XMC)

Review > Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4539-4547.
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Abstract

Objective: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called
COVID-19, has caused a pandemic which has swiftly involved the entire world and raised great public
health concerns. The scientific community is actively exploring treatments that would potentially be
effective in combating COVID-19. Hydroxychloroquine has been demonstrated to limit the replication
of SARS-CoV-2 virus in vitro. In malarial pandemic countries, chloroquine is widely used to treat
malaria. In malarial non-pandemic nations, chloroquine is not widely used. Chloroquine and
hydroxychloroquine share similar chemical structures and mechanisms of action. The aim of this study
was to indirectly investigate the efficacy of chloroquine and hydroxychloroquine for the treatment of
COVID-19 by determining the prevalence of COVID-19 in malaria pandemic and non-pandemic
nations. We sought evidence to support or refute the hypothesis that these drugs could show efficacy
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Extreme Multi-Label Classification (XMC)

-~ One vs all models
e Treat each label as an independent binary classification problem. (e.g.
Rohit et al., 2017; Ian et al., 2017)
- Embedding based models
e Represent target labels in a low-dimensional embedding space. (e.g.
Kush et al., 2015; Yukihiro et al., 2017)
- Tree based models

e Reduce the computational cost by statistics features to create a tree
hierarchy for labels. (e.g. Himanshu et al., 2016; Kalina et al., 2016; Sujay et
al., 2019;)

— Deep learning models

e Leverage deep neural networks to encode and represent document text.
(e.g. Xun et al., 2016; You et al., 2018; Jin et al., 2018; Chang et al, 2019; Xun
et al., 2020;)
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COVID-19 Semantic Indexing Corpus (CSIC)

e Raw Data

0 The COVID-19 Open Research Dataset (CORD-19)
(Wang et al., 2020)

= Large data size (59k documents)

= Considerable coverage (3k journals, over 92% 1n Biology, Medicine, and
Chemistry)

= Abundant meta information (19 property fields, e.g. text, ID, sha, license,
data sources)

= Widely used for various COVID-19 research and competition (Kaggle
Challenge, TREC-COVID Challenge, etc.)

= Doesn’t have any semantic labels
a MedLine database
a PubMed / PMC Central
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z~/COVID-19 Semantic Indexing Corpus (CSIC)

0 The CSIC Corpus Construction
a) Metadata extraction from CORD19 corpus
b) Metadata extraction from MedLine database

c) Webpage collection & metadata extraction from
PubMed / PMC Central

d) Metadata & label mapping from different resources
e) Redundant and conflict documents integration
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&CSIC Corpus

e More than 20 different informative fields are retained in
CSIC corpus

0 title, abstract, body text, keywords, author, affiliation, journal, date,
data source, etc.

Table 1. The Statistic Information of The CSIC Corpus.

Dataset #Documents  #Titles  #Abstracts #Body Texts #Tokens #Semantic Labels

CSIC 84,253 84,253 70,477 46,882 188,559,895 18,476

where ~10% of the CSIC corpus was reserved as the test set, 1.e. the training set and
the test set were 76,253 and 8000, respectively.
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Table 2. The Distribution of the MeSH Semantic Topics in The CSIC Corpus.

MeSH Semantic Topics % of Terms
Diseases 26.08
Analytical Diagnostic and Therapeutic Techniques and Equipment 14.74
Chemicals and Drugs 13.95
Health Care 12.92
Organisms 10.39
Phenomena and Processes 6.72
Anatomy 5.22
Named Groups 3.60
Geographicals 1.31
Information Science 1.24
Disciplines and Occupations 1.24
Anthropology Education Sociology and Social Phenomena 0.94
Psychiatry and Psychology 0.94
Technology Industry and Agriculture 0.57
Humanities 0.14
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Correlation Neural Networks (Xun et al., 2020)

Take advantage of the correlations among different target
labels by correlation units.
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Figure 2. The Structure of A Correlation Network.  Figure 3. The Structure of A Correlation Unit.

where the base modules consist of four SOTA systems, i.e. BertXML(Chang et al., 2019), XMLCNN
(Liu et al.,2017), MeSHProbeNet (Xun et al., 2016) and AttentionXML (You et al., 2018).
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Instance-based Evaluation Metrics
d Precision at top k (P@K)

1 Normalized Discounted Cumulative Gain at top k (N@K).

. 1
precision@k = E Z z],

leri(z)
Z]
DCG@k = Z i
Lot log(l+1)
DCG@k
nDCO@k = — izl 1
2y Tog([+1)

O where z € {0, 1} denote the ground truth label vector of an instance; z~ € RL denote the
model predicted score and r,(2") is the ground truth indices corresponding to the top & indices
of the model predicted rank list
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Experimental results

O Experimental Settings:
= Evaluation: P@1, P@3, P@5, N@1, N@3, N@5
=  Number of correlation units: 2

Table 3. Performance Comparison of Different Systems.

Model P@1 P@3 P@5 N@1 N@3 N@5 #GPUs  #Hours model size(GB)
XMLCNN 93.66 79.86 70.80 93.66 8298 76.12 1 0.50 0.38
Correl-XMLCNN  94.22 8148 72.60 94.22 84.53 77.67 1 0.62 0.65
BertXML 9412 83.01 73.50 94.12 85.57 78.58 1 1.25 0.45
Correl-BertXML 93.36 83.99 75.04 93.36 86.23 79.72 1 1.58 0.73
MeSHProbeNet 94.80 83.09 74.33 94.80 85.79 79.28 1 1.60 0.55
Correl-MeSHProbeNet 94.82 84.63 75.72 94.82 87.11 80.57 1 217 0.83
AttentionXML 94.32 85.62 78.18 94.32 87.82 8217 4 8.17 0.37
Correl-AttentionXML 94.82 85.70 77.91 94.82 87.84 82.17 4 8.50 0.65
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Figure 4. Training curves on the validation set of the CSIC corpus.

Dotted lines denote basic models and solid lines denote target correlation based models.
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IVERSITY EXPERIMENTS & CONCLUSION

Conclusion

O Correlation networks are able to consistently improve the performance of the
existing XMC models;

O The deeper the mode is, the less the improvements with correlation
networks;

O Among all the deep models, the improvement over XMLCNN is the largest,
the improvement over AttentionXML is the smallest;

O Correlation networks exhibits the ability to accelerate the convergence rate
during the training process;
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