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Multi-Label Classification for COVID-19 
Semantic Indexing
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Categorization

INTRODUCTION

Figure 1. An Example of Biomedical Literature Semantic Indexing Problem.
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What is it used for?

1. Document Categorization
2. Knowledge-base Construction
3. Search Engine
4. Drug Discovery
5. COVID-19 Q&A System
6. More…

INTRODUCTION
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l Large Label Set (extreme)
l Multi-Label Classification

Extreme Multi-Label Classification (XMC)
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0  0   0  … 0   1   0  … 1   0   0
……

one-hot encoder

>10k Labels!
Too Many “0” !
I am scared !

INTRODUCTION

l Urgency
q high cost
q rapid increase of COVID-19 

literature
q effective and robust XMC 

technologies 
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Extreme Multi-Label Classification (XMC)
– One vs all models

l Treat each label as an independent binary classification problem. (e.g. 
Rohit et al., 2017; Ian et al., 2017)

– Embedding based models
l Represent target labels in a low-dimensional embedding space. (e.g. 

Kush et al., 2015; Yukihiro et al., 2017)

– Tree based models
l Reduce the computational cost by statistics features to create a tree 

hierarchy for labels. (e.g. Himanshu et al., 2016; Kalina et al., 2016; Sujay et 
al., 2019;)

– Deep learning models
l Leverage deep neural networks to encode and represent document text.

(e.g. Xun et al., 2016; You et al., 2018; Jin et al., 2018; Chang et al, 2019; Xun
et al., 2020;)
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COVID-19 Semantic Indexing Corpus (CSIC)
l Raw Data

q The COVID-19 Open Research Dataset (CORD-19) 
(Wang et al., 2020) 
§ Large data size (59k documents)
§ Considerable coverage (3k journals, over 92% in Biology, Medicine, and 

Chemistry)
§ Abundant meta information (19 property fields, e.g. text, ID, sha, license, 

data sources)
§ Widely used for various COVID-19 research and competition (Kaggle 

Challenge, TREC-COVID Challenge, etc.)
§ Doesn’t have any semantic labels

q MedLine database
q PubMed / PMC Central
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COVID-19 Semantic Indexing Corpus (CSIC)

q The CSIC Corpus Construction
a) Metadata extraction from CORD19 corpus
b) Metadata extraction from MedLine database
c) Webpage collection & metadata extraction from 

PubMed / PMC Central
d) Metadata & label mapping from different resources
e) Redundant and conflict documents integration

DATASET
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CSIC Corpus

l More than 20 different informative fields are retained in 
CSIC corpus 
q title, abstract, body text, keywords, author, affiliation, journal, date, 

data source, etc.
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Dataset #Documents #Titles #Abstracts #Body Texts #Tokens #Semantic Labels

CSIC 84,253 84,253 70,477 46,882 188,559,895 18,476

DATASET

Table 1. The Statistic Information of The CSIC Corpus.

where ~10% of the CSIC corpus was reserved as the test set, i.e. the training set and 
the test set were 76,253 and 8000, respectively. 

Linguistic Data Consortium Workshop



MeSH Semantic Topics % of Terms

Diseases 26.08

Analytical Diagnostic and Therapeutic Techniques and Equipment 14.74

Chemicals and Drugs 13.95

Health Care 12.92

Organisms 10.39

Phenomena and Processes 6.72

Anatomy 5.22

Named Groups 3.60

Geographicals 1.31

Information Science 1.24

Disciplines and Occupations 1.24

Anthropology Education Sociology and Social Phenomena 0.94

Psychiatry and Psychology 0.94

Technology Industry and Agriculture 0.57

Humanities 0.14

Table 2. The Distribution of the MeSH Semantic Topics in The CSIC Corpus.
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Correlation Neural Networks (Xun et al., 2020)

Take advantage of the correlations among different target 
labels by correlation units.

where the base modules consist of four SOTA systems, i.e. BertXML(Chang et al., 2019), XMLCNN
(Liu et al.,2017), MeSHProbeNet (Xun et al., 2016) and AttentionXML (You et al., 2018).

Figure 3. The Structure of A Correlation Unit.Figure 2. The Structure of A Correlation Network.

METHODOLOGY
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Instance-based Evaluation Metrics
q Precision at top k (P@K) 

q Normalized Discounted Cumulative Gain at top k (N@K). 

q where 𝒛 ∈ {0, 1}L denote the ground truth label vector of an instance; 𝒛ˆ ∈ R𝐿 denote the 
model predicted score and 𝑟𝑘(𝒛ˆ) is the ground truth indices corresponding to the top k indices 
of the model predicted rank list
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Experimental results
q Experimental Settings: 

§ Evaluation: P@1, P@3, P@5, N@1, N@3, N@5
§ Number of correlation units: 2
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Model P@1 P@3 P@5 N@1 N@3 N@5 #GPUs #Hours model size(GB)

XMLCNN 93.66 79.86 70.80 93.66 82.98 76.12 1 0.50 0.38

Correl-XMLCNN 94.22 81.48 72.60 94.22 84.53 77.67 1 0.62 0.65

BertXML 94.12 83.01 73.50 94.12 85.57 78.58 1 1.25 0.45

Correl-BertXML 93.36 83.99 75.04 93.36 86.23 79.72 1 1.58 0.73

MeSHProbeNet 94.80 83.09 74.33 94.80 85.79 79.28 1 1.60 0.55

Correl-MeSHProbeNet 94.82 84.63 75.72 94.82 87.11 80.57 1 2.17 0.83

AttentionXML 94.32 85.62 78.18 94.32 87.82 82.17 4 8.17 0.37

Correl-AttentionXML 94.82 85.70 77.91 94.82 87.84 82.17 4 8.50 0.65

Table 3. Performance Comparison of Different Systems.

EXPERIMENTS & CONCLUSION
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Figure 4. Training curves on the validation set of the CSIC corpus. 
§ Dotted lines denote basic models and solid lines denote target correlation based models.
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Conclusion

q Correlation networks are able to consistently improve the performance of the 
existing XMC models;

q The deeper the mode is, the less the improvements with correlation 
networks;

q Among all the deep models, the improvement over XMLCNN is  the largest, 
the improvement over AttentionXML is the smallest;

q Correlation networks exhibits the ability to accelerate the convergence rate 
during the training process;

EXPERIMENTS & CONCLUSION
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