Challenges in representing Rich Data and Annotations

PCREF Workshop, 2020

Sameer S. Pradhan

Linguistic Data Consortium University of Pennsylvania

Deep Learning Revolution

NLP—No longer <u>only</u> Language

- More accurate **computer vision** and **speech recognition** models
- Not just written language, but *Multimodal* understanding
- Representing data is already challenging
- Representing multi-<u>modal</u>, multi-<u>layered</u> metadata (annotations, in our case) which remains <u>in sync</u> with the data and <u>maintain consistency</u> within and <u>across layers</u> can be quite <u>challenging</u>

Underlying Assumption...

<u>Metadata</u> in the form of <u>annotations</u>— <u>Linguistic</u> or otherwise—<u>play an important role</u> in the underlying research An Example Scenario... Only Written Text

Robustness to Tokenization

A Grant is (finally) Funded!

• Phase I

- Use existing Treebank-ed text (= <u>use existing trees</u> and tokens)
- Add a few layers of <u>rich</u> annotation
 - Word Sense (depends <u>only</u> on tokens)
 - Named Entities (depends <u>only</u> on tokens)
 - Propositions (depends on Tree structure)
 - Coreference (depends on Tree structure)

• Phase II

- It is found to be very important to make **minor changes** to...
 - Treebank and PropBank **layer guidelines** so they more are *in sync*
 - A minor change in **tokenization** to <u>split</u> on <u>some</u> hyphens

Now, <u>Update</u> existing Annotations

Easy, Right?

well, **Not** <u>Necessarily</u>

Factors determining the Difficulty

- How the annotation layers are **represented**?
- How tight is the **<u>data coupling</u>** between <u>the layers</u>?
- How detailed are the **specifications**?
 - a. within each layer
 - b. between the layers
- Depending on the answers to the above questions (and maybe a few more)
 - It might be a *nightmarish scenario*, or
 - It might be a **reasonable task**
- **Both** options will very likely require **human intervention** (annotator)
- The *degree of that intervention* and the *complexity of the task* will be determined to a large degree by the *above design decisions*

This was <u>not</u> a Hypothetical scenario

It <u>happened</u> in the <u>OntoNotes</u> project

- Owing to the design of the underlying representation, it was...
 - a **reasonable task**
 - Each layer had a *detailed specification*
 - The layers—both inter- and intra- used a relational data model
 - The layers were **not too tightly coupled**

Multiple-Layers in OntoNotes

Multiple layers of annotation

- Syntax
- Propositions
- Word sense
- Coreference
- Names
- Ontology
- Multilingual resource
 - English (~1M words)
 - Chinese (~1M words)
 - Arabic (~1M words)
- Parallel Data

Interpreting Tree Pointers

wsj/00/wsj_0037.mrg 67 5 gold set.02 ---- 0:2-ARG0 5:0-rel 6:1-ARG1 10:2-ARGM-TMP wsj/00/wsj_0037.mrg 68 5 gold paint.01 ----- 5:0-rel 1:1*6:0-ARG1 8:1-ARG2-in 10:1-ARG0-by 12:1-ARGM-TMP wsj/00/wsj_0037.mrg 69 21 gold exchange.01 ----- 17:2-ARG0 21:0-rel 22:1-ARG1 23:1-ARGM-TMP wsj/00/wsj_0037.mrg 69 35 gold say.01 ----- 31:1-ARG0 35:0-rel 0:2*37:0-ARG1

Propbank Frames

wsj_0037.mrg 67 5 gold set.02 ----- 0:2-ARG0 5:0-rel 6:1-ARG1 10:2-ARGM-TMP wsj_0037.mrg 68 5 paint.01 5:0-rel 1:1*6:0-ARG1 8:1-ARG2-in 10:1-ARG0 12:1-ARGM-TMP wsj_0037.mrg 69 21 gold exchange 61 ----- 17:2-ARG0 21:0-rel 22:1-ARG1 23:1-ARGM-TMP wsj_0037.mrg 69 35 gold say 61 ----- 31:1-ARG0 35:0-rel 0:2*37:0-ARG1

```
<!DOCTYPE frameset SYSTEM "frameset.dtd">
<frameset>
<predicate lemma="paint">
<note>
<rames file for 'paint' based on sentences in wsj and automatic expansion via verbnet.
</note>
<roleset id="paint.01" name="put paint on a surface" vncls="25.1">
<role descr="agent, painter" n="0">< vnrole vncls="25.1" vntheta="Agent"/></role>
<role descr="surface" n="1"><vnrole vncls="25.1" vntheta="Agent"/></role>
<role descr="explicit mention of paint" n="2> <vnrole vncls="25.1"
vntheta="Theme"/> </role>
</roles>
```

Word Sense Inventories

PRO Judging from the Americana in Haruki Murakami 's " A Wild Sheep Chase " (Kodansha, 320 pages, \$18.95 *U*) , baby boomers on both sides of the Pacific have a lot in common .

2

1

wsj/00/wsj_0037.mrg 0 1 judge-v wsj/00/wsj_0037.mrg 0 36 lot-n

Sense Number

```
<?xml version="1.0" ?>
<!DOCTYPE inventory SYSTEM "inventory.dtd">
<inventory lemma="judge-v">
```

```
<sense group="1" n="1" name="act as an official judge>
```

<examples> She was asked to judge the fancy-dress competition. </examples>
<mappings> <wn version="2.1">1,5</wn> <pb>judge.01</pb> </mappings
</sense>

```
<sense group="1" n="2" name="form an opinion, or conclusion>
<examples> They quickly judged him unfit to join the team. </examples>
<mappings> <wn version="2.1">2,3,4</wn> <pb>judge.01</pb> </mappings>
</sense>
</inventory>
```

Annotation Lifecycle

Entity-Relationship Diagram

Multiple-Layers in OntoNotes

But isn't SQL last-century?

But don't take our word for it. Take Google's.

Take a look at Google's second major **Spanner** paper (<u>Spanner: Becoming a SQL System</u>, May 2017), and you'll find that it bolsters our independent findings.

Lessons from the Internet

IP as the Networking Universal Interface (source).

SQL as the slim-waist

The Data Universal Interface

Most of the issues are carried over to **Clinical Narrative** We are adding other modalities involved...

Audio, Images, Videos

...

The same task can become exponentially harder or impossible

Annotation as Code

What if...

- Annotations are represented as we represent and manage **<u>source-code</u>**?
- One peculiarity—*increased complexity of the semantics* for such "language"
- We might benefit from a **version control** mechanism

Functional Data Structures

Ideas from git

- **Each version** of **each layer** of annotation is an **incremental operation** on top of the **earlier version**.
- Try to maximize *deterministic bi-directional* transformations
- Minimize *lossy uni-directional* transformations
- Track *annotation version* and the *guideline specification* dependencies
- Create new *annotation snapshots*
- Consistency checks using *content hashes*

Past Annotations Reachable

Annotation Guidelines can be kept in sync

Ease of Experimentation

Very important to know exactly what guidelines were used for a particular set of annotations

Internet Philosophy

Next Generation of the Internet

- **Plain text** files where possible—UTF-8 for serialization or even base64
- Media Containers—akin to the next generation of internet that focuses on content—Named Data Networking (NDN) or Content Centric Networking (CCN)

When a .parse is not the .parse

- File extensions are typically used to determine content, but when it comes to layers of annotation, things can easily get complicated
- Example, a **.parse** might contain one of many *kinds* or *qualities* of parses
 - Dependency parse
 - Universal Dependency v2.0
 - Custom dependency
 - Constituency parse
 - Gold parse (with traces)
 - Automatically generated
 - Using Charniak parser, model (A)
 - Using Charniak parser, model (B)
 - Using Berkley parser
 - ...
- Similarly the columns in a .conll file might be interpreted differently depending on the year and task involved

When a .parse is not the .parse

- File extensions are typically used to determine content, but when it comes to layers of annotation, things can easily get complicated
- **oohggg_parse** might contain one of many kinds or qualities of parses
- **cnnnn_parse** might contain one of many *kinds* or *qualities* of parses

— Gold or Automatic

- **o** = Gold parse (using OntoNotes guidelines);
- t = Gold parse (using original Treebank guidelines)
- **c** = Charniak parser (Automatic);
- **b** = Berkeley parser (Automatic)
- Traces
 - **o** = original traces;
 - ▶ n = no traces
- Hyphens

- ...

- h = split-at-hyphens;
- n = not-split at hyphens

Cannonical, Compositional Representation

The case of Chinese Characters

Graphical Features—

 Recent work by Wang *et al.*, (2019) has shown that using the <u>radicals</u> in Chinese characters contain semantic information similar to the notion of <u>subwords</u> and <u>suffixes</u> in English and can be used to improve unsupervised learned representations that can improve <u>named entity tagging</u>

Character	Primary Radical
病(illness)	វ (sickness)
痨(tuberculosis)	扩(sickness)
痛(pain)	វ (sickness)
肝(liver)	月(moon)/肉(meat)
胸(chest)	月(moon)/肉(meat)
脑(brain)	月(moon)/肉(meat)

Multiple representations—

• **<u>Pinyin</u>** representations of Chinese characters also help...

Character	Pinyin
病(illness)	bìng
痨(tuberculosis)	láo
痛 _(pain)	tòng
肝(liver)	gān
胸(chest)	xiōng
脑(brain)	nǎo

Interoperability Matters

Case of COVID-19

- Shah and Curtis (2020) identify the *limitations of current EHR systems*
- Difficulties in pooling multiple data sources owing to missing mapping between different medicine nomenclatures
- For a simple query—*Find me patients using Hydroxychloroquine*
 - EHR (A) used National Drug Code
 - EHR (A') used **Medi-Span**
- A **Common Data Model** (CDM) would have helped bridge the two variations of the same EHR system and allowed for better and quicker data analysis
- CDM is *not automatic* and *not static*, but a better tracking system can be used to manage mapping across multiple versions and nomenclatures.

Learning CDM (Mappings)

- Dong et al. (2020), shows the significance of mapping types of COVID-19 <u>tests</u> using LOINC codes
 - ~600 Manually mapped codes
 - 99.3% ITA (Cohen's kappa)
 - 98.9% automatic mapping accuracy
- Allowed finer grained analysis of COVID-19 testing data across 8 sites

•••				
LOINC Code	Total	Percentage	LOINC Long Common Name	
Molecular				
94759-8	240	42.25	SARS-CoV-2 (COVID19) RNA [Presence] in Nasopharynx by NAA with probe detection	
94500-6	202	35.56	SARS-CoV-2 (COVID19) RNA [Presence] in Respiratory specimen by NAA with probe detection	
94309-2	75	13.20	SARS-CoV-2 (COVID19) RNA [Presence] in Unspecified specimen by NAA with probe detection	
94502-2	13	2.29	SARS-related coronavirus RNA [Presence] in Respiratory specimen by NAA with probe detection	
94660-8	11	1.94	SARS-CoV-2 (COVID19) RNA [Presence] in Serum or Plasma by NAA with probe detection	
Antibody				
94563-4	10	1.76	SARS-CoV-2 (COVID19) IgG Ab [Presence] in Serum or Plasma by Immunoassay	
94564-2	4	0.70	SARS-CoV-2 (COVID19) IgM Ab [Presence] in Serum or Plasma by Immunoassay	