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Natural language processing methods are sensitive to sub-
clinical linguistic differences in schizophrenia spectrum
disorders
Sunny X. Tang 1,2,3✉, Reno Kriz4,8, Sunghye Cho 3,8, Suh Jung Park2, Jenna Harowitz2, Raquel E. Gur2, Mahendra T. Bhati2,5,
Daniel H. Wolf2, João Sedoc6 and Mark Y. Liberman3,7

Computerized natural language processing (NLP) allows for objective and sensitive detection of speech disturbance, a hallmark of
schizophrenia spectrum disorders (SSD). We explored several methods for characterizing speech changes in SSD (n= 20) compared
to healthy control (HC) participants (n= 11) and approached linguistic phenotyping on three levels: individual words, parts-of-
speech (POS), and sentence-level coherence. NLP features were compared with a clinical gold standard, the Scale for the
Assessment of Thought, Language and Communication (TLC). We utilized Bidirectional Encoder Representations from Transformers
(BERT), a state-of-the-art embedding algorithm incorporating bidirectional context. Through the POS approach, we found that SSD
used more pronouns but fewer adverbs, adjectives, and determiners (e.g., “the,” “a,”). Analysis of individual word usage was notable
for more frequent use of first-person singular pronouns among individuals with SSD and first-person plural pronouns among HC.
There was a striking increase in incomplete words among SSD. Sentence-level analysis using BERT reflected increased tangentiality
among SSD with greater sentence embedding distances. The SSD sample had low speech disturbance on average and there was no
difference in group means for TLC scores. However, NLP measures of language disturbance appear to be sensitive to these
subclinical differences and showed greater ability to discriminate between HC and SSD than a model based on clinical ratings
alone. These intriguing exploratory results from a small sample prompt further inquiry into NLP methods for characterizing
language disturbance in SSD and suggest that NLP measures may yield clinically relevant and informative biomarkers.
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INTRODUCTION
Language disturbance has long been recognized as a hallmark of
psychosis, ranging from marked disorganization in threshold
schizophrenia spectrum disorders (SSD) to less pronounced
phenotypes among subthreshold psychosis-spectrum conditions
like schizotypy, clinical high risk, and genetic risk for psychosis1–5.
Speech is considered the observable surface phenomena that
reveal, in part, the shrouded thoughts of the inner “mind.” Thus,
thought disorder in psychosis has often been equated with
speech disturbance6. Novel digital phenotyping and computerized
natural language processing (NLP) methods offer the opportunity
to capture speech in ecologically valid settings and automatically
quantify objective parameters that reflect underlying thought
disturbance7. This would enable substantial advancements in
assessment and monitoring of treatment response and could be
used in research to probe more deeply into the psychosis disease
process. However, a great deal remains to be understood about
how to best leverage both established and state-of-the-art NLP
tools to tease out clinically meaningful linguistic parameters that
will have diagnostic and prognostic value.
A variety of NLP techniques have been used to characterize

different language phenotypes in psychosis with varying degrees
of success, mostly focusing on SSD8. Here, “schizophrenia
spectrum disorders” (SSD) refers to threshold-level primary
psychotic disorders9,10. Elvevåg et al.11 first applied Latent

Semantic Analysis to quantify decreased coherence in SSD speech
and was able to predict human ratings of organizational structure,
tangentiality, and content, as well as discriminating between SSD
and control participants with 80–82% accuracy. Several subse-
quent studies have also modeled decreased linguistic cohesion
and found significant group differences between SSD and control
participants12,13. Decreased semantic coherence may predict
conversion to psychotic disorders among young people at clinical
risk for psychosis with 70–80% accuracy5,14. Other successful
approaches have included graph analysis15,16, quantifying seman-
tic density17, and automated metaphor detection18. In one study,
NLP analysis of semantic cohesion accounted for 10% of variance
in neurocognition beyond clinician ratings19. Another study used
automated speech recognition and scoring on a smartphone
verbal memory test to accurately predict human ratings20.
Multiple levels of analysis including generic features like number
of words per sentence, individual word identity, dictionary
features reflecting word categories, and language model features
like n-grams were incorporated in another study to discriminate
between SSD and control speech with 74% accuracy21.
However, other studies have demonstrated negative or

conflicting results, suggesting that a great deal remains to be
understood about applying NLP to evaluate speech disturbance in
psychosis. Despite affective flattening being a common negative
symptom in SSD, use of emotion words were nevertheless similar
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between SSD and control participants22. Cohesion was not
significantly reduced in another study comparing first-episode
psychosis and healthy control (HC) participants23. Multiple levels
of acoustic and linguistic analysis were shown to have a poor
correlation with clinician ratings for negative symptoms7. In
general, despite seemingly straightforward analogies between
acoustic features like pitch variability and pause duration with
negative symptoms like affective flattening and alogia, NLP
measures have shown poor ability to track negative symptoms,
including affective flattening and alogia24. Existing studies in
psychiatry also use older NLP methods that have been supplanted
by more advanced methods in the computational field. In
particular, previous work on categorizing psychosis spectrum
language samples12,14 have leveraged non-contextual word
embeddings such as GloVe and Word2Vec25. For example, these
older NLP methods are unable to incorporate contextual cues that
would distinguish between the word “banks” in “I rob banks” and
“I walked along the banks.”
In this study, we explored multiple NLP methods for character-

izing speech changes in SSD and approached linguistic phenotyp-
ing on three levels: individual words, parts-of-speech (POS), and
sentence-level measures of coherence. The NLP linguistic para-
meters were compared with a clinical gold standard, the Scale for
the Assessment of Thought, Language and Communication
(TLC)26, in their ability to discriminate between speech samples
from SSD and HC participants. To our knowledge, we are the first
to apply Bidirectional Encoder Representations from Transformers
(BERT) to a psychiatric sample; BERT is a state-of-the-art
embedding architecture that is trained to incorporate bidirectional
context and predict whether two sentences are adjacent27. This
advance is significant because it allows us to look at larger units of
discourse, and provides more accurate representation of the
concepts being conveyed—treating discourse as an ordered series
of information exchanges with a direction rather than an
unordered collection of phrases. Moreover, BERT has been shown
to be superior to other methods on several NLP tasks27. The
samples were not enriched for overt thought or language
disorder, in order for the speech and language phenotype to be
more representative of the range present in SSD as a whole.
Because this was an exploratory study and because no consistent
set of key NLP predictors have emerged from prior work, we did
not approach the analyses with a priori expectations of specific
features that would be associated with SSD. Instead, we broadly
hypothesized that speech from individuals with SSD would show
abnormalities on each level of analysis: individual words, POS, and
sentences. In addition, we expected that NLP would be better able
to discriminate between SSD and HC language than the gold
standard clinical rating scale for language disturbance. Of note, we
encountered unexpected findings regarding incomplete words in
SSD and potential methodological pitfalls, which are also
detailed below.

RESULTS
Clinical ratings of language disorder
Individual TLC items are detailed in Supplemental Table 2.
Clinically significant language disorder was present in four
participants with SSD and none of the HC participants. Three of
the SSD participants with TLC global score ≥2 were identified as
outliers in this sample. However, there were no significant group
differences in the TLC global, sum, or any individual item score
(Table 1, Fig. 1). The largest effect sizes were in poverty of content
of speech (Cohen’s d= 0.70) and illogicality (Cohen’s d= 0.51).

NLP measures for individual words and POS
SSD and HC employed distinct word usage patterns, with top SSD-
and HC-associated words listed in Supplemental Table 3. Of note,

top SSD-associated words included first-person singular (“I,” etc.) and
second-person pronouns (“you,” etc.), the filler word “uh,” and
incomplete words. Top HC-associated words included first-person
plural pronouns (“we,” etc.), the filler word “um,” and laughter.
Supplemental Fig. 1 further details the propensity for participants
with SSD to use the first-person singular over plural pronouns, and
the filler word “uh” over “um.” The use of incomplete words, on its
own, was able to discriminate between SSD and HC groups with
AUC= 0.88, accuracy= 90% (Supplemental Fig. 2A). With leave-one-
out cross validation, word usage alone discriminated between SSD
and HC with AUC= 0.80, accuracy= 76% (Supplemental Fig. 2B).
Mean POS counts per 100 words and group comparisons while

covarying for demographic variables, education level, and cohort
are reported in Table 2. Participants with SSD produced fewer
adverbs (p= 0.001), adjectives (p= 0.03), and determiners (p=
0.03) but produced more pronouns (p= 0.03). The group
differences in the other POS categories were not significant,
including for interjections as a whole (despite differences for the
specific filler words, “um” and “uh”). Excluding the three SSD
outliers, the group differences in adverbs (p < 0.001), adjectives
(p= 0.04), and determiners (p= 0.03) remained but the difference
in pronouns became trend-level (p= 0.09).

Table 1. Sample Characteristics.

HC SSD p value Cohen’s d

Sample

n 11 20

Cohort 0.10

Cohort 1 5 15

Cohort 2 6 5

Age (mean years ± SD) 35.6 ± 5.8 36.5 ± 7.2 0.75 0.12

Sex (n, %)

Female 7 (64%) 9 (45%) 0.32

Male 4 (36%) 11 (55%)

Race (n, %) 0.12

African American 3 (30%) 13 (65%)

Asian 0 (0%) 1 (5%)

Caucasian 7 (70%) 6 (30%)

Education level 15.8 ± 2.2 13.4 ± 2.5 0.01 −1.00

Recording Characteristics

Recording
duration (min)

11.6 ± 2.2 12.7 ± 4.5 0.48 0.29

Mean sentence length
(words)

17.5 ± 3.1 14.4 ± 4.3 0.04 0.81

Word count 1748.8 ±
448.0

1782.3 ±
908.2

0.92 0.04

Language Measures

TLC Global Score 0.0 ± 0.0 0.5 ± 1.0 0.13 0.56

TLC Total Score 0.9 ± 1.7 4.4 ± 9.2 0.10 0.46

Next-sentence
predictability

0.96 ± 0.03 0.94+ 0.04 0.25 -0.44

TLC global score is an overall impression of speech and language
disturbance based on standard anchors. TLC total score is summed using
the published formula, Total= 2*(Sum of items 1–11) + (Sum of items
12–18). Next-Sentence Predictability derived from BERT, with 0 indicating
low predictability and 1 indicating high predictability. Additional details
about the SSD participants are provided in Supplemental Table 1.
Bolded – categories; HC healthy control participants, SSD participants with
schizophrenia spectrum disorder, TLC Scale for the Assessment of Thought
Learning and Communication (Andreasen26).
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Sentence-level NLP results
In a linear regression model covarying for demographic variables,
education level, and cohort, group failed to predict mean BERT
next-sentence probability scores (Table 1; Beta coefficient= 0.01,
p= 0.28). Weighting by normalized sentence length and exclusion

of very brief sentences (less than five words) did not alter the null
results. Figure 2 shows the average BERT embedding difference
between the original interviewer prompt and the participant’s
response sentence, varying by distance from the original prompt.
Modeling the trajectories for embedding distance, we found the
intercept for SSD (0.260, 95% CI [0.257, 0.263]) was significantly
higher than of HC (0.247, 95% CI [0.242–0.252]), suggesting that

Fig. 1 Group effects on clinical language ratings and BERT next-sentence probability. Individual scores with group median and
interquartile range are shown. There were no significant group differences for (A) TLC Global Score (Cohen’s d= 0.55, p= 0.13), (B) TLC Total
Score or Sum (Cohen’s d= 0.48, p= 0.10), and (C) BERT Next-Sentence Probability (Cohen’s d=−0.44, p= 0.25). The three SSD participants
with TLC global scores ≥2 were identified as outliers.

Table 2. Parts-of-speech frequencies in SSD and HC.

HC (N= 11) SSD (N= 20) p-value Cohen’s d

Adverb 10.65 (0.95) 8.11 (1.76) 0.001 1.66

Determiner 7.50 (0.96) 6.53 (1.25) 0.03 0.83

Adjective 7.10 (1.57) 6.19 (0.78) 0.03 0.82

Pronoun 11.77 (1.47) 13.41 (2.67) 0.03 −0.71

Preposition 8.84 (1.37) 7.97 (1.41) 0.08 0.62

Particle 2.65 (0.52) 2.35 (0.50) 0.08 0.59

Conjunction 5.33 (1.35) 4.61 (1.40) 0.29 0.53

Noun 13.16 (0.93) 13.67 (2.16) 0.57 −0.28

Interjection 6.07 (1.66) 6.35 (2.45) 0.75 −0.12

Verb 19.34 (1.74) 19.55 (2.60) 0.82 −0.09

HC healthy control participants, SSD participants with schizophrenia
spectrum disorder, Adverb word that modifies an adjective or verb,
Determiner determines the kind of reference for a noun, e.g. the, this, a,
Adjective word that modifies a noun, Pronoun word that refers to the self or
another noun mentioned elsewhere, e.g., I, she, them, Preposition word
expressing relation to another clause, e.g. on, after, for, Particle function
word providing meaning to associated words, e.g., to run, ate up, talk over,
Conjunction connector word, e.g., and, but, because, Noun a person, place,
thing, state, or quality, Interjection utterance expressing emotion, e.g., ouch,
ugh, hey, Verb word expressing action, state, or relation.
P-values shown for ANCOVA tests, co-varying for education level, study
cohort, and demographic variables (age, sex, and race).

Fig. 2 Sentence embedding distance by interviewer-participant
exchanges. The average BERT sentence embedding difference
between the original interviewer prompt and the participant’s
response sentence, varying by distance from the original prompt.
Responses from individuals with SSD began significantly farther
from interviewer prompts relative to HC and traveled increasingly
father away where those of HC did not. Fitting linear regressions to
the trajectories, we find: SSD intercept= 0.260, 95% CI [0.257, 0.263];
SSD slope= 6.6e−4, 95% CI [2.6e−4, 1.1e−3]; HC intercept= 0.247,
95% CI [0.242–0.252]; HC slope= 1.5e−5, 95% CI [−6.2e−4, 6.5e−4].
The analysis was repeated excluding the 3 SSD outliers with high
TLC scores and the results were consistent.
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responses were more unrelated to interviewer prompts. Further-
more, the slope of the SSD embedding trajectory was significantly
above zero (6.6e−4, 95% CI [2.6e−4, 1.1e−3]) but the slope for HC
was not significantly different from zero (1.5e−5, 95% CI [−6.2e
−4, 6.5e−4]), suggesting that SSD sentences diverged significantly
from interviewer prompts while HC sentences did not. Omitting
the 3 outliers from the analysis did not alter this pattern.

Comparing clinical and NLP language measures
Figure 3 shows receiver operative characteristics for naive Bayes
models discriminating between SSD and HC groups based on
language measures. Using leave-one-out cross-validation, area
under the curve (AUC) for clinical measures alone (0.58, Accuracy
= 68%) was substantially lower than for the model based on NLP
measures alone (AUC= 0.91, Accuracy= 87%). Adding clinical
measures to the NLP model did not improve discriminating ability
(AUC= 0.86, Accuracy= 81%). The inclusion of education level as
an additional predictor did not substantially change the accuracy
of these models—NLP alone (Accuracy= 87%) and NLP+ TLC
measures (Accuracy= 77%) continued to outperform the model
based on TLC measures alone (Accuracy= 68%). We also
confirmed these results using fivefold cross validation and found
a similar pattern, and higher accuracy. There was insufficient

variability in clinical ratings to explore the correlation between TLC
and NLP measures.

DISCUSSION
In this exploratory study, we applied NLP to multiple levels of
linguistic analysis comparing speech among SSD and HC
participants. Individuals with SSD used significantly more pro-
nouns and made more speech errors/partial words but used fewer
adverbs and determiners. Analysis of individual word usage was
notable for more frequent use of first-person singular pronouns
among individuals with SSD and more frequent use of first-person
plural pronouns among HC. The filler “uh” was highly associated
with SSD, while “um” was associated with HC. There was also a
striking increase in incomplete words among the SSD group.
Sentence-level analysis using BERT reflected potentially increased
tangentiality among SSD; sentence embedding distance increased
for participants with SSD more than for HC. Participants with SSD
generally had low language disorder and group means were not
distinguishable from HC based on blinded clinical TLC ratings. It is
unclear whether the specific linguistic group differences reported
here represent clinically relevant, generalizable features of
language disturbance in SSD. However, on the whole, NLP
measures of language disturbance appear to be sensitive to these

Fig. 3 Discrimination between SSD and HC group status. Naive Bayes models with leave-one-out cross-validation were constructed for
(A) Clinical features alone, from the Scale for the Assessment of Thought Language and Communication (TLC), (B) Natural language
processing-derived linguistic features alone, and (C) A combination of TLC and NLP-derived features. The NLP-only model performed better
than the clinical-only model (accuracy 87% compared to 68%) and was similar to the model incorporating both NLP and clinical linguistic
features (accuracy 81%).
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subclinical differences as NLP-based models had a greater ability
to discriminate between HC and SSD than a model based on
clinical ratings—whether or not education level was included as
an additional predictor.
Differences in pronoun usage have been noted by several other

studies. Buck et al.28 also found increased pronoun use overall and
increased first-person singular pronoun use among individuals
with SSD when compared to HC. While the differences were not
significant, they found similar trends with increased use of
second-person pronouns among SSD and increased use of first-
person plural pronouns among HC28. Increased use of first-person
pronouns was also found among written text samples from
individuals with SSD compared to HC29. Another study found
significantly increased use of second-person pronouns among
individuals with genetic risk for schizophrenia who later devel-
oped schizophrenia, compared to those who did not30. These
differences in pronoun use appear to be context specific. Analysis
of Twitter language found increased use of first-person singular
and plural pronouns among posts from individuals who self-
identified as having schizophrenia31. When compared to indivi-
duals with depression, those with SSD used fewer first-person
singular pronouns32. Further delineation of differences in pronoun
use is necessary as this is among the more highly replicated
objective language disturbances in SSD and may reflect informa-
tive underlying differences in self-concept and/or social and
metacognition28,32.
“Um” and “uh” are frequently referred to as filled pauses, but

may also be considered interjections signaling a preparedness
problem on the part of the speaker and an impending delay33,34.
“Um” takes a longer time to pronounce and usually signals a
longer delay than “uh”33. The overall occurrence of filled pauses in
speech from individuals with schizophrenia was previously found
to be similar to that of neurotypical controls, despite greater
occurrence of unfilled pauses or blocking prior to initiation of a
new clause34,35. Our finding of greater “uh” occurrence among
SSD and greater “um” occurrence among HC has not been
previously reported, to our knowledge. In fact, these filler words
are often excluded from analysis12. However, interestingly, a
similar difference in filler word usage has been described among
children with autism spectrum disorder with individuals with ASD
using a higher proportion of “uh” compared to “um”36. While any
connection between these findings is purely speculative at this
point, it does raise the fascinating possibility that shared changes
in brain circuitry may lead to a preference for “uh” over “um”
among individuals with SSD and ASD. It remains to be determined
whether the greater prevalence of “uh” spoken by SSD
corresponds to a greater prevalence of short pauses, compared
to long pauses, or whether this difference in “um”/”uh” usage is a
symptom of impaired or inaccurate signaling by speakers with
SSD, dissociated from pause duration.
Similarly, we are the first to report an increase in incomplete

spoken words among individuals with schizophrenia. While
decreased fluency has been noted in general, to our knowledge,
the phenomenon of stopping mid-word has not been discussed in
the literature in relation to SSD despite our finding that this one
feature discriminates between SSD and HC with AUC 0.88. It is
likely that this finding has not been replicated because these
partial words were often considered meaningless and therefore
not transcribed or discarded from the analysis. In live conversa-
tions, there is also a cognitive propensity not to notice these
disfluencies37. If this finding is replicated, the use of incomplete
words may provide a powerful objective marker of language
disturbance and language circuity abnormality among individuals
with SSD.
In this study, NLP measures alone were better able to

discriminate between SSD and HC than clinical TLC ratings. The
prediction model achieved 87% accuracy with leave-one-out cross
validation. This accuracy is similar to results from other

computational linguistics analyses, which have been reported at
69%14,16, 69–75%38, 83%39, 84%18, and 87–93%12. Advances in this
field may contribute substantially to our understanding of the
neurobiological underpinnings of schizophrenia. NLP measures
have been tied to specific cognitive deficits in schizophrenia-like
attention and social cognitive impairments28,40,41. Outside of
psychiatry, NLP measures from healthy adults predicted stress
response-related gene expression with better accuracy than self-
reports42. To better understand the pathological mechanisms of
psychiatric disorders and to develop targeted treatments,
quantitative objective biomarkers of changes in brain circuitry
are sorely needed.
There are several limitations to this study. The sample is small

and heterogeneous with respect to study conditions between
cohorts, with a higher n of SSD participants in Cohort 1 than
Cohort 2, accounting for 48% of the total sample. However, results
did not differ when we covaried for cohort. We were powered for
differences with large group effects and are likely to miss small
and medium effects. Due to the exploratory nature of this
investigation, we did not correct for multiple comparisons, and
therefore some findings may be the result of “overfitting” and may
not be generalizable. The low number of individuals with clinically
evident thought disorder limited our ability to assess correlations
between NLP and TLC measures, but also demonstrates the ability
of NLP measures to detect subclinical language disturbances in
SSD. As a field, careful attention should be paid to technical quirks
which can bias results, like our experience with automated
sentence parsing resulting in falsely decreased coherence in the
SSD group (as measured by BERT next-sentence probability).
Other groups have had similar experiences12. Some of these errors
result from the fact that most NLP tools have been trained on
written texts, not speech. There is a need for a large shared corpus
of clinical speech samples to advance NLP methods in psychiatry
research. Since BERT is specifically trained on sentence-to-
sentence prediction, this was the most straightforward and
natural way of applying BERT to the coherence task and within-
sentence coherence was not examined in this study. Furthermore,
prior studies suggest that medication effects may drive some
language abnormalities in SSD, particularly impaired phonation, as
well as decreased quantity and diversity of words spoken43,44.
Future efforts should assess how NLP measures correlate with
specific dimensions of psychosis symptoms and medications used,
for which consistent data were not available in these cohorts.
To our knowledge, this is the first study to apply BERT or any

state-of-the-art embedding method that incorporates bidirec-
tional context. Given the limited sample size in this exploratory
study, findings should not be considered definitive or general-
izable. However, our results nevertheless prompt further inquiry
into NLP methods for characterizing language disturbance in SSD
and suggest that NLP measures as a whole may yield clinically
relevant and informative biomarkers.

METHODS
Sample
Two cohorts are included and are described in Table 1 with further details
on the SSD group given in Supplemental Table 1. Both cohorts were
recruited at the University of Pennsylvania and underwent written
informed consent for the research procedures. Study procedures were
approved by the Institutional Review Board at the University of
Pennsylvania. SSD participants were stable outpatients and underwent
semi-structured diagnostic interviews and consensus diagnostic case
conferences which conferred a diagnosis of schizophrenia or schizoaffec-
tive disorder under DSM IV criteria45. Individuals with diagnosed
intellectual disabilities were excluded from both cohorts. There was no
selection or enrichment of the sample for participants with thought or
language disorder—i.e., we did not preferentially include individuals with
clinically evident symptoms of speech disorganization. HC participants
underwent the same diagnostic interviews and were determined to be free

S.X. Tang et al.

5

Published in partnership with the Schizophrenia International Research Society npj Schizophrenia (2021)    25 



of major psychiatric disorders. Both cohorts provided recorded speech
samples derived from open-ended interviewing. Cohort 1 was asked to talk
about themselves. Cohort 2 was asked to recount positive and neutral
memories. Cohort 1 recordings were significantly shorter than those of
Cohort 2 when considering total participant and interviewer speech and
pause duration (10.9 ± 1.7 vs. 15.5 ± 5.4 min, p= 0.002), but the difference
in participant word count was not significant (1661 ± 567 vs. 1970 ± 1161
words, p= 0.32). There were no significant differences between the
cohorts in participant age, sex, education level, mean sentence length or
number of sentences spoken.
Comparing the SSD and HC groups, SSD participants had significantly

lower mean education level than HC. This difference was accounted for in
the statistical analyses. Language samples from SSD and HC were of similar
duration and total word count, but HC used longer sentences than SSD.
Recordings were transcribed verbatim by human annotators for NLP

analysis, including noting non-verbal vocalizations like laughter and
disfluencies like “um.” Transcriber v.1.5.246 was used to transcribe audio
samples from Cohort 2, while samples from Cohort 1 were transcribed
using standard word processing software. To protect participant privacy, all
personal or identifying references to an individual or location’s name were
replaced with “[name]” and all dates replaced with “[date].”

Clinical assessments
Recordings and transcripts were reviewed by a blinded psychiatrist with
significant experience with schizophrenia research and treatment (SXT).
The Scale for the Assessment of Thought, Language and Communication
(TLC) was used to rate participant speech on 18 items, as well as a global
measure of language disorder (ranging from 0-Absent to 4-Extreme) and a
summation score calculated as per the published formula detailed in
Supplemental Table 226. The TLC was chosen because it is freely available,
highly cited, and includes a wide span of clinically evident linguistic
features. The modal global severity score was 0 for both HC and SSD,
reflecting generally mild or absent language disorder in the SSD group,
likely because they were composed of relatively high-functioning
individuals who are motivated to participate in research.

NLP analyses for individual words and POS
Individual words were identified and utilization was compared between
SSD and HC language samples. To capture larger trends, all pronouns of
the same type were considered together. For example, “I” “my” and “me”
were all counted as first-person singular pronouns. All incomplete words
where the participant began to say a word but stopped before finishing
were noted in aggregate. Odds ratios were calculated for words spoken by
individuals with SSD relative to HC. The odds ratios were log-transformed
and underwent weighting based on informative Dirichlet prior47, which
takes into account the expected frequency of each word in a random text
and selects for words that are more “unique” to these documents.
POS in participant speech were automatically tagged for all tokenized,

individual words with spaCy, using their basic model (‘en_core_web_sm’)
for English48. Token counts for each POS category were calculated per 100
words and compared between the SSD and HC groups.

NLP sentence-level analyses using BERT
A major recent innovation in NLP has been the creation of large-scale pre-
trained language models27,49,50. The most relevant pre-trained model for
this work is known as Bidirectional Encoder Representations from
Transformers, or BERT27. Unlike previous non-contextual embedding
models, BERT allows for richer word representations, which takes the
context surrounding a word into account. Trained on the English Wikipedia
(2.5 billion words) and the Google BooksCorpus (800 million words), BERT
operates with two general language understanding tasks: (1) Masked
language modeling, where 15% of words from an input text are removed
at random, and BERT predicts these words, and (2) Next-sentence
prediction, where given two sentences, BERT predicts the likelihood of
the second sentence following directly after the first.
We take advantage of the directionality incorporated into BERT next-

sentence prediction to explore sentence-level coherence. For example, the
BERT next-sentence probability for the below sentence pair is 1.0; this
means the model is extremely confident that sentence 2 directly follows
sentence 1. On the other hand, if the order of the sentences is reversed,
the next-sentence probability is instead 0.002.
“Um, what do you think about current political issues like the energy

crisis?”

“They’re destroying too many cattle and oil just to make soap.”

Excerpted from an example of language disturbance in the
TLC Scale26

In this work, we employed two BERT-based methods to compare sentence-
level differences between SSD and HC language samples, one based on
next-sentence predictability, and the other based on BERT embeddings. In
the next-sentence predictability approach, we performed sentence
splitting on the interviews by using NLTK51, which split sentences at
intuitive punctuation points identified by transcribers. Sentence pairs were
extracted from each interview, where the second sentence of each pair
was uttered by the interview subject. From there, we directly leveraged
BERT to predict the next sentence probability of each pair. Weighting the
next-sentence probabilities by sentence length was attempted but did not
alter the results. Note that initially, we used SpaCy to automatically split
interview turns into sentences48. However, upon closer inspection, we
discovered that this was incorrectly segmenting sentences at incomplete,
filler, and repeated words. These segments (e.g., “I sto- // stopped at the
store”) were more frequent in SSD and were assigned low BERT next-
sentence predictability scores and biased initial results toward a significant
difference in mean next-sentence predictability. The results presented here
instead used sentences segmented intuitively by transcribers, which
considered filler words and repeated phrases as a part of the same
sentence.
In the embedding approach, we broke down the interviews into full

dialogue turns (exchanges beginning with an interviewer prompt and
followed by any number of participant sentences until the interviewer
speaks again for the next turn). We generated a single embedding ei for
the entire Interviewer dialogue turn ti; we did this by generating BERT
embeddings for each word in t, and computed the mean embedding
across all words. From there, we generated a sentence-level BERT
embedding esj for each sentence sj in the subsequent subject turn and
calculated the mean difference between ei and esj. The intuition behind
this is that if tangentiality or derailment is present, participant responses
are likely to move further away from the initial interview prompt compared
to coherent exchanges. Simple linear regression models were fit on
sentence-wise embedding distance to compare the slopes and intercepts
of the embedding trajectories for the two groups. As BERT is specifically
trained on sentence-to-sentence prediction, our analyses were done on
the sentence-level and within-sentence incoherence was not analyzed.

Statistical analysis
Normality was assessed with the Shapiro-Wilkes test and significant
departure from normality was found for TLC global score (p < 0.001) and
TLC sum (p < 0.001). Three outliers in the SSD group with high TLC scores
were identified with the standard boxplot method. Group differences for
these measures were compared with the Wilcoxon Rank Sum test with
two-sided alpha= 0.05. Other measures were also tested for normality and
we found they met the requirements for parametric tests. We built
ANCOVA models for group comparisons of POS, covarying for education
level, cohort, and demographic variables (age, sex, and race). All effect
sizes were measured with Cohen’s d. BERT next-sentence probability was
calculated for each participant by taking the mean of the BERT probability
scores for every sentence uttered by the participant, directly from the BERT
output. To evaluate group effects, linear models were constructed with
mean BERT next-sentence probability as the outcome variable and group
as predictor while covarying for cohort, education level, and demographic
variables (age, sex, education level). Due to the exploratory nature of these
analyses, we did not correct for multiple comparisons.
In order to test the discriminating ability of the features, we trained

three different naive Bayes models from the scikit-learn package52, varying
the number of features. The naive Bayes model was chosen because
predictors were assumed to be independent, as is common in statistical
modeling, and we assumed that we know something about the
distributions for the outcomes independent of the predictors. One model
was trained with TLC ratings only, and another model was trained with
linguistic features only (log-odds ratio, BERT scores, POS counts per 100
words, and number of incomplete words). The other model was trained
with the linguistics features and the TLC sum ratings. In all models, we
imputed missing values with the simple imputer function, and standar-
dized the features with the StandardScaler function for effective learning.
To assess for the effect of education level on model accuracy, we
additionally ran these models while also including education level as a
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predictor. Leave-one-out cross-validation was chosen to minimize bias and
used to evaluate the general performance of the models and report AUC
and the mean accuracy scores in the results.
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