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a b s t r a c t

Variation in speech is often quantified by comparing phonetic transcriptions of the same utterance. However, man-

ually transcribing speech is time-consuming and error prone. As an alternative, therefore, we investigate the

extraction of acoustic embeddings from several self-supervised neural models. We use these representations

to compute word-based pronunciation differences between non-native and native speakers of English, and

between Norwegian dialect speakers. For comparison with several earlier studies, we evaluate how well these dif-

ferences match human perception by comparing them with available human judgements of similarity. We show

that speech representations extracted from a specific type of neural model (i.e. Transformers) lead to a better

match with human perception than two earlier approaches on the basis of phonetic transcriptions and MFCC-

based acoustic features. We furthermore find that features from the neural models can generally best be extracted

from one of the middle hidden layers than from the final layer. We also demonstrate that neural speech represen-

tations not only capture segmental differences, but also intonational and durational differences that cannot ade-

quately be represented by a set of discrete symbols used in phonetic transcriptions.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Past work in e.g., automatic speech recognition has found
that variability in speech signals is often poorly modeled,
despite recent advances in speech representation learning
using deep neural networks (Huang, Slaney, Seltzer, &
Gong, 2014; Huang, Dong, Liu, & Gong, 2014; Koenecke
et al., 2020). This may be particularly true for monolingual as

opposed to multilingual models ( _Zelasko, Moro-Velázquez,
Hasegawa-Johnson, Scharenborg, & Dehak, 2020). While
acoustic variability may be caused by technical aspects such
as microphone variability (Mathur, Isopoussu, Kawsar,
Berthouze, & Lane, 2019), an important source of variation is
the embedding of accent or dialect information in the speech
signal (Hanani, Russell, & Carey, 2013; Najafian, DeMarco,
Cox, & Russell, 2014). Non-native accents are frequently
observed when a second language is spoken, and are mainly
caused by the first language background of non-native speak-
ers. Similarly, regional accents are caused by the (first) dialect
or regional language of the speaker. The accent strength of a
speaker depends on the amount of transfer from their native
language or dialect, and is generally influenced by a variety
of characteristics, of which the age of learning the (second)
language, and the duration of exposure to the (second) lan-
guage are important predictors (Asher & García, 1969;
Leather, 1983; Flege, 1988; Wieling, Bloem, Baayen, &
Nerbonne, 2014).

However, accent and dialect variability are often overlooked
in modeling languages using speech technology, and conse-
quently high-resource languages such as English are often
treated as homogeneous (Blodgett, Green, & O’Connor,
2016). Given that the number of non-native speakers of Eng-
lish is almost twice as large as the former group, this assump-
tion is problematic (Viglino, Motlicek, & Cernak, 2019). It is
therefore important to accurately model pronunciation variation
using representations of speech that allow accent and dialect
variability to be adequately incorporated.

Traditionally, pronunciations are often represented by pho-
netically transcribing speech (Nerbonne & Heeringa, 1997;
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Livescu & Glass, 2000; Gooskens & Heeringa, 2004;
Heeringa, 2004; Wieling, Bloem, Mignella, Timmermeister, &
Nerbonne, 2014; Chen, Wee, Tong, Ma, & Li, 2016;
Jeszenszky, Stoeckle, Glaser, & Weibel, 2017). However,
accurately transcribing speech using a phonetic alphabet is
time consuming, labor intensive, and interference from tran-
scriber variation might lead to inconsistencies (Hakkani-Tür,
Riccardi, & Gorin, 2002; Bucholtz, 2007; Novotney &
Callison-Burch, 2010). Additionally, phonetic transcriptions
are not entirely adequate in representing how people speak,
as fine-grained pronunciation differences that are relevant for
studying accented speech (or dialect variation) may not be fully
captured with a discrete set of symbols (Mermelstein, 1976;
Duckworth, Allen, Hardcastle, & Ball, 1990; Cucchiarini,
1996; Liberman, 2018).

Consequently, acoustic-only measures have been pro-
posed for comparing pronunciations (Huckvale, 2007;
Ferragne & Pellegrino, 2010; Strycharczuk, López-Ibáñez,
Brown, & Leemann, 2020). Whereas these studies only con-
sidered limited segments of speech, or exclusively included
speakers from a single language background, Bartelds,
Richter, Liberman, and Wieling (2020) introduced a new
method that did not have these limitations. Specifically,
Bartelds et al. (2020) proposed an acoustic-only method for
comparing pronunciations without phonetic transcriptions,
including speakers from multiple native language backgrounds
while using all information available within the speech signal.
In their method, they represented accented speech as 39-
dimensional Mel-frequency cepstral coefficients (MFCCs),
which were used to compute acoustic-based non-native-
likeness ratings between non-native and native speakers of
English. They found a strong correlation of r ¼ �0:71 between
their automatically determined acoustic-based non-native-
likeness scores and previously obtained native-likeness rat-
ings provided by human raters (Wieling et al., 2014). This
result was close to, but still not equal to, the performance of
an edit distance approach on the basis of phonetic transcrip-
tions (which showed a correlation of r ¼ �0:77).

Bartelds et al. (2020) conducted several small-scale exper-
iments to investigate whether more fine-grained characteristics
of human speech were captured as compared to the phonetic
transcription-based pronunciation difference measure. Their
results showed that the acoustic-only measure captured seg-
mental differences, intonational differences, and durational dif-
ferences, but that the method was not invariant to
characteristics of the recording device.

The quality of MFCC representations is known to be depen-
dent on the presence of noise (Zhao & Wang, 2013). Recent
work has shown that neural network models for self-
supervised representation learning are less affected by noise,
while being well-equipped to model complex non-linear rela-
tionships (Schneider, Baevski, Collobert, & Auli, 2019;
Baevski, Schneider, & Auli, 2020; Ling, Liu, Salazar, &
Kirchhoff, 2020; Baevski, Zhou, Mohamed, & Auli, 2020). Gen-
erally, neural models benefit from large amounts of labeled
training data. However, self-supervised neural models learn
representations of speech without the need for (manually)
labeled training data. Therefore, these models can be trained
using even larger amounts of data. Previous work has shown
that fine-tuning these neural models using transcribed speech
resulted in representations that resembled phonetic structure,
and offered significant improvements in downstream speech
recognition tasks (van den Oord, Li, & Vinyals, 2019; Kahn
et al., 2020). In contrast to previous methods for comparing
pronunciations, these self-supervised (monolingual and multi-
lingual) neural models are based on large amounts of data
from a large group of (diverse) speakers and are therefore
potentially robust against accent variation.

Consequently, in this paper, we employ and evaluate sev-
eral of these self-supervised neural models in order to create
a fully automatic acoustic-only pronunciation difference mea-
sure, which is able to quantify fine-grained differences
between accents and dialects. Specifically, we compare and
evaluate five self-supervised neural models, namely wav2vec
(Schneider et al., 2019, subsequently denoted by w2v), vq-
wav2vec with the BERT extension (Baevski, Schneider
et al., 2020, subsequently denoted by vqw2v), wav2vec 2.0
(Baevski, Zhou et al., 2020, subsequently denoted by w2v2),
the multilingual w2v2 model XLSR-53 (Conneau, Baevski,
Collobert, Mohamed, & Auli, 2020, subsequently denoted by
XLSR), and DeCoAR (Ling et al., 2020). Each of these models
learned speech representations by predicting short fragments
of speech (e.g., approximately 300 ms on average in the case
of w2v2) within spoken sentences from the training data.
These predicted fragments therefore roughly correspond to
one or more subsequent phonemes (including their transi-
tions). These neural models were selected for this study as
they achieved state-of-the-art speech recognition results on
standard benchmarks such as the Wall Street Journal corpus
(WSJ; Garofalo, Graff, Paul, & Pallett, 2007) and the Lib-
rispeech corpus (Panayotov, Chen, Povey, & Khudanpur,
2015), while differing with respect to their specific architecture.

There are several use cases in which adequately quanti-
fying pronunciation differences automatically is important.
First, the field of dialectometry (see e.g., Nerbonne &
Heeringa, 1997; Wieling, Nerbonne, & Harald Baayen,
2011; Wieling & Nerbonne, 2015) investigates geographical
(and social) dialect variation on the basis of pronunciation
differences between different dialects. While there are sev-
eral dialect (atlas) datasets containing phonetic transcrip-
tions, differences in transcription practices (sometimes even
within the same dataset; Wieling, Heeringa, & Nerbonne,
2007) limit the extent to which these pronunciations can be
compared. An acoustic-only method would solve these com-
patibility issues, and would allow datasets that do not have
phonetic transcriptions to be analyzed directly. Another use
case is highlighted by a recent study of San et al. (2021).
They automatically compare pronunciations acoustically to
find pronunciations of a specific word from endangered lan-
guages in a large set of unannotated speech files. Such a
system, if successful, directly impacts language maintenance
and revitalisation activities.

To evaluate the quality of the pronunciation differences, we
will use human perceptual judgements. Previous work has
shown that human listeners can adequately assess and quan-
tify differences between pronunciations (e.g., Preston, 1999;
Gooskens, 2005; Scharenborg, 2007; ). To determine the rela-
tive performance of our methods, we compare the use of self-
supervised neural models to the phonetic transcription-based
approach of Wieling et al. (2014), and the MFCC-based
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acoustic-only approach of Bartelds et al. (2020). More details
about these methods are provided in Section 3.2.

To investigate the versatility and robustness of the various
models, we use three different datasets for evaluation. The first
is identical to the dataset used by Wieling et al. (2014) and
Bartelds et al. (2020), and includes both acoustic recordings
of native and non-native English speakers as well as human
native-likeness judgements to compare against. The second
is a new dataset which focuses on accented speech from a
single group of (Dutch) non-native speakers, for which human
native-likeness judgements are likewise available. As we
would also like to evaluate the effectiveness of the neural mod-
els for a different type of data in another language, we addition-
ally include a dataset with Norwegian dialect pronunciations
and corresponding human native-likeness ratings. For repro-
ducibility, we provide our code via https://github.com/Bar-
telds/neural-acoustic-distance.

To understand the phonetic information captured by the
neural models, we introduce a visualization approach reveal-
ing the location of differences between two compared record-
ings, and conduct several additional small-scale experiments,
in line with those conducted by Bartelds et al. (2020).

2. Materials

2.1. Datasets

Our acoustic data comes from three datasets in two differ-
ent languages. We use two datasets that contain (mostly)
non-native American-English pronunciations, and an additional
dataset with Norwegian dialect pronunciations.

2.1.1. Non-native American-English

Pronunciations from non-native speakers of American-
English are obtained from the Speech Accent Archive
(Weinberger & Kunath, 2011), as well as the Dutch speakers
dataset described in Offrede et al. (2020). The Speech Accent
Archive covers a wide variety of language backgrounds, while
the Dutch speakers dataset is suitable for evaluating our
method on a set of English pronunciations that have more
fine-grained accent differences, as it only contains speakers
with the same native (Dutch) language background.

The Speech Accent Archive contains over 2000 speech
samples from native and non-native speakers of English. Each
speaker reads the same 69-word paragraph that is shown in
Example1.

(1) Please call Stella. Ask her to bring these things with
her from the store: Six spoons of fresh snow peas, five
thick slabs of blue cheese, and maybe a snack for her
brother Bob. We also need a small plastic snake and
a big toy frog for the kids. She can scoop these things
into three red bags, and we will go meet her Wednes-
day at the train station.

Similar to past work of Wieling et al. (2014) and Bartelds
et al. (2020), we use 280 speech samples from non-native
American-English speakers as our target dataset (i.e. the
non-native speakers for whom human native-likeness ratings
are available), and 115 speech samples from U.S.-born L1
speakers as our reference native speaker dataset. As there
is much regional variability in the pronunciation of the native
American-English pronunciations, we use a set of reference
speakers (cf. Wieling et al., 2014) instead of a single reference
speaker.

Among the 395 English samples from the Speech Accent
Archive, 206 speakers are male and 189 speakers are female.
From these speakers, 71 male and 44 female speakers belong
to the native speaker (reference) set. The average age of the
speakers in the entire dataset is 32.6 years (r = 13.5). Non-
native speakers have an average age of onset for learning
English of 10.5 years (r = 6.6). The 280 non-native
American-English speakers have a total of 99 different native
languages, with Spanish (N ¼ 17), French (N ¼ 13), and Ara-
bic (N ¼ 12) occurring most frequently.

The Dutch speakers dataset includes recordings of native
speakers of Dutch (with no other native languages) that all
read the first two sentences of the same elicitation paragraph
used for the Speech Accent Archive. These recordings were
collected at a science event held at the Dutch music festival
Lowlands, where Offrede et al. (2020) investigated the influ-
ence of alcohol on speech production in a native and non-
native language. While the effect of alcohol on the pronuncia-
tion in the non-native language (English) was limited, we nev-
ertheless only included the speech samples of all 62 sober
participants (30 male and 32 female speakers). The average
age of the speakers in this dataset is 33.4 years (r = 10.3).
The average age of onset for learning English was not
obtained, but generally Dutch children are exposed to English
at an early age (i.e. the subject is mandatory in primary schools
from the age of about 10 to 11 onwards, but children are usu-
ally exposed to English much earlier via mass media).

For each speaker in this dataset, we phonetically tran-
scribed the pronunciations according to the International Pho-
netic Alphabet. These phonetic transcriptions were created by
a single transcriber (matching the conventions used by Wieling
et al., 2014), and used to obtain the transcription-based pro-
nunciation distances (i.e. for comparison with the acoustic
methods).
2.1.2. Norwegian

This dataset consists of 15 recordings and phonetic tran-
scriptions from Norwegian dialect speakers from 15 dialect
areas (4 male and 11 female speakers). The average age of
these speakers is 30.5 years (r = 11). Moreover, each speaker
lived in the place where their dialect was spoken until the mean
age of 20 years, and all speakers estimated that their pronun-
ciations were representative of the dialect they speak.

Earlier work has used this dataset for comparing dialect dif-
ferences on the basis of the Levenshtein distance (Gooskens
& Heeringa, 2004) and formant-based acoustic features
(Heeringa, Johnson, & Gooskens, 2009) to human perceptual
dialect differences. We included this dataset and the percep-
tual ratings from Gooskens and Heeringa (2004) to specifically
investigate whether the self-supervised neural models (even
though these are, except for XLSR, based on the English lan-
guage) are able to model differences for languages other than
English.

The speakers in this dataset all read aloud 58 words from
the fable ‘The North Wind and the Sun’. The recordings were
segmented in 58 samples corresponding to the words from
the fable. For five dialects, one or two words were missing,
as speakers were not always perfectly reading the text.

https://github.com/Bartelds/neural-acoustic-distance
https://github.com/Bartelds/neural-acoustic-distance
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Phonetic transcriptions, which we use as input for the Leven-
shtein distance algorithm, were created by a single transcriber.
The text, recordings, phonetic transcriptions, and transcription
conventions are available online.1
2.2. Human accent and dialect difference ratings

Human accent ratings are widely used to evaluate accent-
edness in speech (Koster & Koet, 1993; Munro, 1995;
Magen, 1998; Munro & Derwing, 2001). Similarly, human rat-
ings have been used to determine how different dialects are
from each other (Gooskens & Heeringa, 2004). To evaluate
our method, we report Pearson’s correlation between the com-
puted acoustic (or phonetic transcription-based) differences
and the averaged human accent (or dialect difference) ratings.
While we evaluated read as opposed to spontaneous speech,
Munro and Derwing (1994) found that human accent ratings
are not different for the two types of speech.
2.2.1. Non-native American-English

The perceptual data for the Speech Accent Archive speech
samples were collected by Wieling et al. (2014). Native U.S.-
born speakers of English were invited to rate the accent
strength of a set of (at most) 50 samples through an online
questionnaire. Accent strength ratings were given using a 7-
point Likert scale ranging from 1 (very foreign sounding) to 7
(native English speaking abilities). While each speech sample
contained the entire 69-word paragraph (average duration of
the samples was 26.2 seconds), participants were allowed to
provide their rating without having listened to the full sample.
In total, the ratings of 1,143 participants were collected
(57.6% male and 42.4% female) for a total of 286 speech sam-
ples, where each participant on average rated 41 speech sam-
ples (r = 14). The average amount of ratings per sample was
157 (r = 71). The mean age of the participants was 36.2 years
(r = 13.9), and they most frequently lived in California (13.2%),
New York (10.1%), and Massachusetts (5.9%). From the 286
samples, six were from native American-English speakers.
These were also identified as such, as their average ratings
ranged between 6.79 and 6.97 (0:22 6 r 6 0:52).

Human accent ratings of the second (Dutch speakers) data-
set were provided by a different group of U.S.-born L1 speakers
of English (Offrede et al., 2020). In this case, a questionnaire
was created in which participants rated the accent strength of
the speech samples on a 5-point Likert scale ranging from 1
(very foreign-sounding) to 5 (native English speaking abilities).
Participants were not required to listen to the complete sample
(average duration: 18.7 seconds) before providing their rating.
A total of 115 participants (73.0% male, 25.2% female, and
1.8% other) rated an average of 17 speech samples each
(r = 9.2). On average, each sample received 24 ratings
(r = 6.7). The mean age of the participating raters was
47.9 years (r = 16). The participants most often originated from
California (13.9%), New York (10.4%), and Pennsylvania
(8.7%). As the sampleswere shorter than for the SpeechAccent
Archive, a less fine-grained rating scale was used.

The consistency of the ratings was assessed using Cron-
bach’s alpha (Cronbach, 1951). For both studies, the ratings
1 https://www.hf.ntnu.no/nos/.
were consistent, with alpha values of 0.85 and 0.92 for the
Speech Accent Archive dataset and Dutch speakers dataset,
respectively (Nunnally, 1978).
2.2.2. Norwegian

Gooskens and Heeringa (2004) carried out a listening
experiment using the recordings of the Norwegian dataset. A
total of 15 groups of raters (high school pupils, one group
per dialect area) were asked to judge each speaker on a 10-
point scale. A score of 1 was given when the pronunciation
of the speaker was perceived to be similar to the rater’s own
dialect, while a score of 10 indicated that the pronunciation
of the speaker was maximally dissimilar from the rater’s own
dialect. The average duration of the speech samples was
about 31 seconds.

On average, each group consisted of 19 listeners (48%
male and 52% female) with a mean age of 17.8 years. For
the majority of their life (16.7 years, on average), raters had
lived in the place where their dialect was spoken. Only 3% of
the raters reported to never speak in their local dialect. About
81% of the raters reported to use their dialect often or always.
The consistency of the ratings was not reported by Gooskens
and Heeringa (2004).
3. Methods

3.1. Self-supervised neural models

We compare and evaluate five self-supervised pre-trained
neural models (i.e. w2v, vqw2v, w2v2, XLSR, and DeCoAR).
The self-supervised neural models have learned representa-
tions of acoustic recordings by training the models to predict
upcoming speech frames, without using labeled data
(Schneider et al., 2019; Ling et al., 2020; Baevski, Schneider
et al., 2020; Baevski, Zhou et al., 2020). An important charac-
teristic of these deep learning models is that they contain mul-
tiple hidden layers containing information about the underlying
data. Architectures and training techniques of these models
have typically been inspired by successful methods in natural
language processing such as word2vec (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013), ELMo (Peters
et al., 2018), and BERT (Devlin, Chang, Lee, & Toutanova,
2019).

All of the evaluated acoustic models, except XLSR, were
pre-trained on the large unlabeled Librispeech dataset, which
contains 960 hours of English speech obtained from audio
books (LS960). This dataset is divided into two parts, namely
a part which includes clean data (460 hours), and a part which
includes noisy data (500 hours). Speakers with accents closest
to American-English (represented by pronunciations from the
Wall Street Journal-based CSR corpus (SI-84) described by
Douglas & Baker, 1992) were included in the clean data part,
while the noisy data part contained accents that were more dis-
tant from American-English (Panayotov et al., 2015). The
XLSR model, instead, was trained on 56,000 hours of speech
from a total of 53 languages, including European, Asian, and
African languages. Note that the majority of the pre-training
data for XLSR still consists of English speech (44,000 hours).

In addition to the pre-trained model variants, there are fine-
tuned variants available for the w2v2 and XLSRmodels. These



Fig. 1. PMI-based Levenshtein alignment for two different pronunciations of the word
“afternoon”. The total transcription-based pronunciation distance between the two
pronunciations equals the sum of the costs of all edit operations (i.e. 0.081).
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models were fine-tuned on labeled data in a specific language
to improve their performance on speech recognition tasks.
However, the process of fine-tuning might have influenced
the linguistic representations that are learned during pre-
training. We therefore also include these fine-tuned model vari-
ants in our evaluation. For English, we evaluate the w2v2
model that has been fine-tuned on 960 hours of English
speech data (subsequently denoted by w2v2-en), and the
XLSR model that was fine-tuned on 1,686 hours of English
speech data (further denoted by XLSR-en). The w2v2-en
model was chosen because it is the largest fine-tuned English
model available, and Baevski, Zhou et al. (2020) showed that
increasing the model size improved performance on all evalu-
ated speech recognition tasks. For Norwegian, we included the
XLSR model fine-tuned on 12 hours of Swedish (which was the
closest language available to Norwegian with a fine-tuned
model available; further denoted by XLSR-sv).

The effectiveness of these self-supervised neural models
was originally evaluated by using the learned representations
for the task of automatic speech recognition. However, in this
study we assess whether or not these acoustic models also
capture fine-grained information such as pronunciation varia-
tion. As the investigated algorithms use multiple hidden layers
to model the acoustic signal, we also evaluate (using a devel-
opment set) which layers are most suitable for our specific
task. More information about these and other aspects of the
models can be found in Appendix A.1 and A.2.
3.2. Existing methods

For comparison with the self-supervised neural models, we
also report the results on the basis of two existing approaches
for quantifying pronunciation differences, namely the MFCC-
based approach of Bartelds et al. (2020) and the phonetic
transcription-based approach of Wieling, Margaretha, and
Nerbonne (2012). Both methods are currently the best-
performing automatic (acoustic- or transcription-based) algo-
rithms for determining pronunciation differences that match
human perceptual pronunciation differences well, and are
explained in more detail below.
3.2.1. Phonetic transcription-based distance calculation

The phonetic transcription-based distances are determined
on the basis of the adjusted Levenshtein distance algorithm
proposed by Wieling et al. (2012). The Levenshtein algorithm
determines the cost of changing one phonetically transcribed
pronunciation into another by counting the minimum amount
of insertions, deletions, and substitutions (Levenshtein,
1966). The adjustment proposed by Wieling et al. (2012)
extends the standard Levenshtein distance by incorporating
sensitive segment differences (rather than the binary distinc-
tion of same vs. different) based on pointwise mutual informa-
tion (PMI) (Church & Hanks, 1990). This data-driven method
assigns lower costs to sound segments that frequently occur
together, while higher costs are assigned to pairs of segments
that occur infrequently together. These sensitive sound seg-
ment differences are subsequently incorporated in the Leven-
shtein distance algorithm. An example of a PMI-based
Levenshtein alignment for two pronunciations of the word
“afternoon” is shown in Fig. 1.
To obtain reliable segment distances using the PMI-based
Levenshtein distance algorithm, it is beneficial if the number
of words and segments is as large as possible. As the Dutch
speakers dataset is relatively small, we instead used the sen-
sitive segment differences obtained on the basis of the (larger)
Speech Accent Archive dataset (i.e. the same as those used
by Wieling et al., 2014).

After the Levenshtein distance algorithm (incorporating sen-
sitive sound differences) is used to quantify the pronunciation
difference between each word for a pair of speakers, the pro-
nunciation difference between two speakers is subsequently
determined by averaging all word-based pronunciation differ-
ences. Additionally, for the two English datasets, the difference
between the pronunciation of a non-native speaker and native
(American-English) speech (i.e. the non-native-likeness) is
computed by averaging the pronunciation difference between
the non-native speaker and a large set of native English speak-
ers (the same for both datasets).

3.2.2. MFCC-based acoustic distance calculation

For the Speech Accent Archive recordings, the MFCC-
based differences between the individual non-native speakers
and native English speakers were available from Bartelds et al.
(2020). For the native Dutch speakers dataset, and the Norwe-
gian dataset, we calculate these differences following the
same approach. In short, this consists of comparing 39-
dimensional MFCCs of pronunciations of the same word (by
two speakers) to obtain the acoustic difference between the
pronunciations. We use dynamic time warping to compare
the MFCCs (Giorgino, 2009). This algorithm is widely used to
compare sequences of speech features by computing the min-
imum cumulative distance (i.e. the shortest path) through a
cost matrix that contains the Euclidean distance between
every pair of points in the feature representations. To account
for durational differences between the pronunciations, we nor-
malize the minimum cumulative distance by the length of the
feature representations. See Bartelds et al. (2020) for more
details. Finally, the non-native-likeness is computed in the
same way as for the Levenshtein distance algorithm, explained
in the previous section.

4. Experimental setup

4.1. Non-native American-English pronunciation differences

Following Wieling et al. (2014) and Bartelds et al. (2020), we
compute a measure of acoustic distance from native English
speech by individually comparing the non-native target sam-
ples from both datasets to the 115 native reference samples.
Neural representations of all samples are acquired by using
the full samples as input to the neural models. The final output
of these neural models should correspond with the original
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input (including all frames), and will therefore not contain any
new information. Because of this, we use the feature represen-
tations of hidden layers (discussed in Section 3.1) as acoustic
embeddings. These representations are extracted by doing a
forward pass through the model up to the target hidden layer.
Specifically, we investigated for each neural model which layer
performed best for our task, by evaluating the performance (i.e.
the correlation with human ratings) using a held-out develop-
ment set (25% of the data of the Speech Accent Archive data-
set, and 50% of the data of the much smaller Dutch speaker
dataset). As layers sometimes show very similar performance,
we also evaluated which layers showed significant lower per-
formance than the best-performing layer. For this, we used
the modified z-statistic of Steiger (1980) for comparing depen-
dent correlations. After selecting the best-performing layer, the
performance is evaluated on the remaining data (and the full
dataset, if the patterns of the development set and the other
data are similar). Samples are cut into individual words after
embedding extraction using time-alignments from the Penn
Phonetics Lab Forced Aligner (Yuan & Liberman, 2008). For
word pairs between a reference and target speaker, length nor-
malized similarity scores between the embeddings are calcu-
lated using dynamic time warping.

Scores are averaged across all 69 words (Speech Accent
Archive dataset) or 34 words (Dutch speakers dataset) to
acquire a distance measurement between a target speaker
and a reference speaker. To compute a single score of dis-
tance between a target speaker and native English speech,
the distances between the target speaker and all reference
native speakers are averaged.

We evaluate our algorithms on both datasets by calculating
the Pearson correlation between the resulting acoustic dis-
tances and the averaged human native-likeness judgements
for the target samples. Note, however, that the results on the
basis of the Speech Accent Archive are likely more robust as
this dataset contains a large amount of (longer) samples, a
variety of native language backgrounds, and a larger amount
of ratings per sample. We visualize the complete approach in
Fig. 2.
Fig. 2. Visualization of the acoustic distance measure where features are extracted using seve
After feature extraction, the samples are sliced into individual words, which are subsequent
averaged and compared to human perception.
4.2. Norwegian pronunciation differences

For the Norwegian dataset, we measure acoustic distances
by computing neural representations for the segmented word
samples similar to the approach used for the non-native
American-English samples. The selection of the best-
performing layer for the neural methods was determined again
using a validation set, containing a random sample of 50% of
the data. Word-based neural representations of the same word
are compared using dynamic time warping to obtain similarity
scores, which are length normalized. These are subsequently
averaged to obtain a single distance measure between two
dialects (i.e. two speakers).

We evaluate our algorithms on the Norwegian dialects data-
set by computing the Pearson correlation between the acoustic
distances and perception scores provided by the dialect
speakers, and compare this value to the correlation obtained
by using phonetic transcription-based distances and MFCC-
based distances instead of the self-supervised neural
acoustic-only distances. As Gooskens and Heeringa (2004)
found that dialect distances with respect to themselves erro-
neously increased the correlation with the perceptual dis-
tances, we excluded these distances from our analysis.
4.3. Influence of sample

To obtain a better understanding of the influence of our ref-
erence sample, and the specific set of words on our results, we
conduct several additional experiments on the (larger) Speech
Accent Archive non-native English dataset using our best-
performing model.

First, we investigate the effect of choosing a single refer-
ence speaker, as opposed to using the reference set of all
115 speakers. Second, we further examine the effect of
speaker backgrounds on the correlation with human percep-
tion, by restricting the set of reference native speakers to
speakers from the western half of the U.S. and the English-
speaking part of Canada. We opt for this set, as these areas
are characterized by less dialect variation compared to the
ral acoustic-only methods. The output layer of the models is selected in a validation step.
ly compared using dynamic time warping. The word-based acoustic distances are then
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eastern half of the U.S. (Boberg, 2010). Third, as the gender
distribution between the native and non-native speakers dif-
fered for our reference speaker set compared to the set of
non-native speakers, we investigate the influence of gender
by restricting the reference set to a single gender.

Finally, while the correlations are determined on the basis of
an average over 69 words, we are also interested in the perfor-
mance when only individual words are selected. This analysis
may reveal which words are particularly informative when
determining non-native-likeness.
Fig. 3. Visualization of neural acoustic distances per frame (based on w2v2) with the
pronunciation of /hyːd/ on the x-axis and distances to the pronunciation of /hoːd/ on the y-
axis. The horizontal line represents the global distance value (i.e. the average of all
individual frames). The blue continuous line represents the moving average distance
based on 9 frames, corresponding to 180 ms. As a result of the moving average, the blue
line does not cover the entire duration of the sample. Larger bullet sizes indicate that
multiple frames in /hoːd/ are aligned to a single frame in /hyːd/.

2 https://bit.ly/visualization-tool
4.4. Understanding representations

To obtain a better understanding of the acoustic properties to
which our final best-performing neural acoustic distance mea-
sure is sensitive, we conduct several additional experiments
using the Speech Accent Archive recordings. We first evaluate
how well the models are able to capture variation in specific
groups of non-native speakers. By restricting the background
(i.e. the native language) and thereby creating a more homoge-
neous sample (similar to the Dutch speakers dataset), human
accent ratings may lie closer together. Strong correlations
between human perception and acoustic distances when the
range of scores is large (as in the full dataset), may not neces-
sarily also imply strong correlations when there is less variation.
Consequently, this experiment, together with the analysis of the
Dutch speakers data, investigates whether or not our models
also model human perception at a more fine-grained level.

In addition, to understand whether the acoustic distances
comprise (linguistically relevant) aspects of pronunciation dif-
ferent from pronunciation distances computed using MFCCs
or phonetic transcriptions, we fit multiple linear regression
models. In those models, human accent ratings are predicted
based on the acoustic distances of our best-performing self-
supervised neural model, MFCC-based acoustic distances
(Bartelds et al., 2020), and phonetic transcription-based differ-
ences (Wieling et al., 2014). We evaluate the contribution of
each predictor to the model fit, and assess the model’s
explained variance to determine whether distinctive aspects
of pronunciation are captured.

Finally, Bartelds et al. (2020) found that acoustic distances
computed by using MFCCs not only captured segmental differ-
ences, but also intonational and durational differences
between acoustically altered pronunciations of the same word.
To assess whether this information is captured by our best-
performing neural method as well, we replicate the experiment
of Bartelds et al. (2020). Specifically, we compute acoustic dis-
tances between four series of recordings of the word “living”
(ten repetitions per series) and compare the acoustic distances
to those computed using MFCCs. The first two series of
recordings were unmodified but recorded with a different
recording device (the built-in microphone of a laptop, versus
the built-in microphone of a smartphone). The third and fourth
series were manipulated by changing the intonation (“living?”)
and relative duration of the first syllable (“liːving”), respectively.
To illustrate the results of this experiment, we have developed
a visualization tool, which is discussed below and may help
understand whether or not our best-performing (black box)
neural method is able to distinguish aspects of speech that
are linguistically relevant from those that are not.
4.4.1. Visualization tool

For this study, we have developed a tool that visualizes the
dynamic time warping alignments and the corresponding align-
ment costs to highlight where in the acoustic signal the differ-
ences between two pronunciations of the same word is most
pronounced. As such, this tool may be helpful for interpreting
the acoustic distances returned by our models, for example
by highlighting that the acoustic differences between two pro-
nunciations are most divergent at the end (or start) of a word.
An illustration of the output (and interpretation) of this tool is
shown in Fig. 3, which compares the pronunciation of a Dutch
speaker pronouncing the two non-words /hyːd/ vs. /hoːd/. This
example illustrates the relative influence of different phonemes
on the acoustic distance within a word. The difference between
the two pronunciations is lowest in the beginning of the word (/
h/), whereas it is highest in the middle part (comparing [yː] and
[oː]). The difference at the end (i.e. /d/) is higher than at the
beginning (for /h/), which may reflect perseverative coarticula-
tion, despite the transcriptions being identical. An online demo
of this visualization tool can be used to generate similar figures
for any pair of recorded pronunciations.2

5. Results

We first report on the performance of the non-native
American-English speakers from the Speech Accent Archive
and Dutch speakers dataset. Subsequently, we present the
results on the Norwegian dataset to show how the self-
supervised models perform on a language different from Eng-
lish. Finally, we discuss the phonetic information encoded in
the pre-trained representations using visualizations of the
acoustic distances, and report on the results from our addi-
tional experiments.

5.1. Non-native American-English pronunciation differences

Table 1 shows the correlations between the non-native-
likeness scores and the average human native-likeness rat-
ings for both datasets. The modified z-statistic of Steiger



Table 1
Pearson correlation coefficients r between acoustic-only or phonetic transcription-based
distances and human native-likeness ratings, using w2v, vqw2v, w2v2, XLSR, w2v2-en,
XLSR-en, DeCoAR, the PMI-based Levenshtein distance (LD), and MFCCs to compute
distances on the Speech Accent Archive (SAA) dataset and native Dutch speakers dataset
(DSD). All correlations are significant at the p < 0:001 level. The values between
parentheses show the selected layers of the neural models on the basis of the 25%
validation set for the Speech Accent Archive dataset and the 50% validation set for the
Dutch speakers dataset, respectively.

Model SAA DSD

w2v (7, 5) �0.69 �0.25
vqw2v (11, 10) �0.78 �0.67
w2v2 (17, 12) �0.85 �0.70
XLSR3 (16, 16) �0.81 �0.47
DeCoAR (2, 4) �0.62 �0.40

w2v2-en (10, 9) �0.87 �0.71
XLSR-en3 (8, 9) �0.81 �0.63

LD (Wieling et al., 2014) �0.77 �0.70
MFCC (Bartelds et al., 2020) �0.71 �0.34

3 We also computed correlation coefficients using the most recent XLS-R model
(Babu et al., 2021), which is pre-trained on 436,000 hours of speech in 128 languages.
To directly compare the results to XLSR and XLSR-en, we used the pre-trained model
with the same number of parameters and fine-tuned this model on English labeled data
available in the Common Voice dataset. However, the results of these newer models are
not significantly better (p > 0:05) from the results obtained using XLSR and XLSR-en.
We therefore report those latter results.

Fig. 4. Pearson correlation coefficients of acoustic distances compared to human
accent ratings for different Transformer layers in the w2v2-en model. The vertical line
marks the layer that was chosen as the best-performing layer based on the 25%
validation set of the Speech Accent Archive dataset. Layers with a correlation that is not
significantly different (p > 0:05) from the optimal layer are indicated by the thick red
line.

Table 2
Pearson correlation coefficients r between acoustic-only or phonetic transcription-based
distances and human native-likeness ratings, using w2v2-en, XLSR-sv, the PMI-based
Levenshtein distance (LD), and MFCCs for computing pronunciation distances for the
Norwegian dialect dataset. All correlations are significant at the p < 0:001 level. The
values between parentheses show the selected layers of the neural models on the basis of
the 50% validation set.

Model Mean r

w2v2-en (3) 0.49
XLSR-sv4 (7) 0.49

LD (Wieling et al., 2014) 0.66
MFCC (Bartelds et al., 2020) 0.22

4 When using XLS-R fine-tuned on Swedish labeled data from the Common Voice
dataset, the correlation coefficient is not significantly different (p > 0:05) from XLSR-

sv.
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(1980) shows that the w2v2-en model significantly outper-
forms all other models (including the Levenshtein distance
approach, which was already reported to match human per-
ception well; Wieling et al., 2014) when applied to the Speech
Accent Archive dataset (all z0s > 3, all p0s < 0:001). Simi-
larly, for the Dutch speakers dataset, the w2v2-en is also
the best-performing model. In this case, it significantly
improved over w2v, vqw2v, DeCoAR, XLSR, and MFCC (all
z0s > 3, all p0s < 0:001), but not over the other approaches
(p > 0:05).

For the neural models, the numbers between parentheses
show the best-performing layer (on the basis of the perfor-
mance on the validation set). As an example of how individual
layers may show a different performance, Fig. 4 shows the per-
formance for each layer for the best-performing w2v2-en
model applied to the Speech Accent Archive dataset. It is clear
that rather than selecting the final layer, the performance of an
intermediate layer (10) is highest (and not significantly different
from the performance of layers 8 to 11). Furthermore, there is a
close match between the observed pattern for both the valida-
tion set and the test set. Appendix A.2 shows these graphs for
all neural models and datasets.
5.2. Norwegian pronunciation differences

Table 2 shows the results for the Norwegian dialects data-
set. In this experiment, we only include neural representations
from the best-performing fine-tuned monolingual English and
multilingual model in the previous section (i.e. w2v2-en and
XLSR-sv as Swedish is more similar to Norwegian than Eng-
lish). Unfortunately, there is no monolingual Norwegian model
available. In this case, the performance of the PMI-based
Levenshtein distance is substantially (and significantly: all
z0s > 3, all p0s < 0:001) higher than both of the neural meth-
ods (which did not differ from each other in terms of perfor-
mance, but did improve over the MFCC approach:
z > 3; p < 0:001). Note that the correlations are positive,
as higher perceptual ratings reflected more different dialects.

5.3. Influence of sample

In this section, we report on the influence of the specific
sample of reference speakers and the included words across
which we averaged. Table 3 reveals the influence of our speci-
fic sample of reference speakers by showing the averaged cor-
relation coefficients (and the associated standard deviation) for
the various methods applied to the Speech Accent Archive
dataset. Instead of using the full set of 115 native speakers
as reference set, in this analysis each individual native speaker
was used once as the single reference speaker. Particularly of
note is that only w2v2, XLSR and their fine-tuned variants, as
well as the PMI-based Levenshtein distance appear to be min-
imally influenced by individual reference speaker differences
(i.e. reflected by the low standard deviations). Specifically,
w2v2 and w2v2-en yield the lowest standard deviations as
well as the highest correlation ranges for individual reference
speakers.

Additionally, we computed the correlation coefficient using
our best-performing model (i.e. w2v2-en) based solely on
including reference native speakers from the western half of
the U.S. and the English-speaking part of Canada. The result-
ing correlation of r ¼ �0:87 (p < 0:001) was identical to the



Table 3
Averaged Pearson correlation coefficients r, with standard deviations and correlation
ranges, between acoustic-only or phonetic transcription-based distances and human
native-likeness ratings applied to the Speech Accent Archive dataset, using w2v, vqw2v,
w2v2 (pre-trained and fine-tuned), XLSR (pre-trained and fine-tuned), DeCoAR, the PMI-
based Levenshtein distance (LD), and MFCCs to compute distances when individual U.S.-
born native American-English speakers were treated as the single reference speaker. All
correlation coefficients are significant at the p < 0:001 level. The values between
parentheses show the selected layer of the neural models on the basis of the validation
set.

Model Mean r Std. Dev. Range

w2v (7) �0.57 0.11 [�0.14, �0.73]
vqw2v (11) �0.69 0.08 [�0.16, �0.79]
w2v2 (17) �0.83 0.02 [�0.73, �0.86]
XLSR (16) �0.76 0.05 [�0.47, �0.83]
DeCoAR (2) �0.49 0.08 [�0.22, �0.67]

w2v2-en (10) �0.86 0.01 [�0.79, �0.88]
XLSR-en (8) �0.78 0.04 [�0.53, �0.83]

LD (Wieling et al., 2014) �0.74 0.04 [�0.52, �0.79]
MFCC (Bartelds et al., 2020) �0.45 0.10 [�0.20, �0.69]

Fig. 5. Violin plots visualizing the spread in native-likeness ratings for speakers of
different native languages. The number of speakers is indicated between parentheses
below the language. The correlation for each group is indicated above each violin plot.

Table 4
Coefficients of a multiple regression model (R2 ¼ 0:77) predicting human native-likeness
judgements on the basis of phonetic transcription-based distances computed with the PMI-
based Levenshtein distance (LD), and acoustic-only distances based on MFCCs and
w2v2-en.

Estimate
(in z)

Std.
Error

t-value p-value

(Intercept) 2.98 0.03 86.56 < 0.001
LD (Wieling et al., 2014) �0.15 0.06 �2.35 < 0.05
MFCC (Bartelds et al., 2020) 0.08 0.06 1.33 0.18
w2v2-en �0.98 0.08 �11.75 < 0.001

Table 5
Normalized averaged acoustic distances of four variants of the word “living” (each
repeated ten times) compared to the normal pronunciation of “living”, computed using
w2v2-en and MFCCs. Standard deviations are shown between parentheses.

w2v2-en MFCC

Normal pronunciation 0.18 (0.10) 0.23 (0.13)
Normal pronunciation (different recording device) 0.29 (0.08) 0.88 (0.04)
Rising intonation 0.61 (0.07) 0.92 (0.03)
Lengthened first syllable 0.91 (0.05) 0.80 (0.03)

M. Bartelds et al. / Journal of Phonetics 92 (2022) 101137 9
correlation when including all reference speakers. The results
were also similar when the reference speaker set was
restricted to only men or women, with correlations of
r ¼ �0:87 (p < 0:001) and r ¼ �0:87 (p < 0:001),
respectively.

Finally, we calculated the correlation with human perception
using w2v2-en when instead of the full 69-word paragraph
individual words were selected. These correlations ranged
from r ¼ �0:50 for the word “She” to r ¼ �0:78 for the word
“Stella”. The average correlation was r ¼ �0:67
(p < 0:001; r ¼ 0:06). While the results on the basis of
the full dataset show a higher correlation with human percep-
tion, it is noteworthy that some individual words also appear
to correlate strongly with perception.

5.4. Understanding representations

To assess whether our best-performing model can also
identify more fine-grained differences, we evaluate the model
against several subsets of data consisting of non-native speak-
ers from the same native language background. The spread in
native-likeness ratings, as well as the correlations for the
groups with the largest number of speakers are shown in
Fig. 5. Except for the native speakers of German (with a rela-
tively restricted range in native-likeness ratings), we observe
strong correlations for all groups of speakers.

The low correlation for German speakers suggests that a
restricted range of native-likeness ratings may negatively
affect the correlation with human perceptual ratings. However,
subsequent experiments using w2v2-en (not shown) revealed
that the correlation when only including speakers who received
average native-likeness ratings between, e.g., 5 and 6 was not
lower than when increasing the range to include all speakers
who received average native-likeness ratings between, e.g.,
3 and 6.

To identify whether the acoustic distances computed using
w2v2-en capture additional pronunciation characteristics
compared to acoustic distances based on MFCCs or phonetic
transcription-based distances, we fitted a multiple regression
model predicting the human native-likeness ratings of the
Speech Accent Archive dataset. Table 4 shows the estimated
coefficients (for standardized predictors), and summarizes the
fit of the regression model. Acoustic distances computed using
w2v2-en and phonetic transcription-based distances calcu-
lated by the PMI-based Levenshtein distance both contribute
significantly to the model fit (p < 0:05), whereas this is not
the case for the MFCC-based distances. The contribution of
w2v2-en is strongest as is clear from the standardized esti-
mates. Overall, this model accounts for 77% of the variation
in the human native-likeness assessments. A model fitted
exclusively on the basis of the phonetic transcription-based
distances explains 60% of the variation in the human native-
likeness ratings. Given that a model fitted exclusively on the
basis of the w2v2-en-based distances explains 76% of the
variation in the human native-likeness ratings, these self-
supervised neural models capture information that is not cap-
tured by phonetic transcriptions. Nevertheless, the abstrac-
tions provided by phonetic transcriptions do provide some
(limited) additional information over the self-supervised neural
models.

Table 5 shows how acoustic distances on the basis of the
MFCC approach and the w2v2-en model are affected by into-
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nation and timing differences, as well as by recording device.
For each condition, ten repetitions were recorded. The record-
ings are the same as those used by Bartelds et al. (2020). To
enable a better comparison, however, all obtained distances
are scaled between 0 and 1. It is clear that the averaged dis-
tances from the repetitions of the same word (which may have
differed slightly) are somewhat smaller for the w2v2-en model
than for the MFCC approach. Importantly, whereas the MFCC
approach does not cope well with a different recording device,
the w2v2-en model appears to be much more robust (i.e.
resulting in values closer to those of the normal pronunciation).
Interestingly, whereas the MFCC approach appears to find lar-
ger differences between recordings differing in intonation com-
pared to those with a lengthened first syllable, the opposite is
true for the w2v2-en model. Both methods, however, appear
to be sensitive to differences regarding these aspects.

To illustrate, Fig. 6 visualizes a comparison between a sin-
gle normal pronunciation of “living” and four other pronuncia-
tions. Specifically, Fig. 6a shows a comparison with another
normal pronunciation. Fig. 6b shows a comparison with the
same pronunciation, but using a different recording device.
Fig. 6c shows a comparison with a rising intonation pronunci-
ation. Finally, Fig. 6d shows a comparison with a lengthened
first syllable pronunciation. In line with Table 5, the values on
the y-axis show that the distance between the two normal pro-
nunciations is smaller than when using a different recording
Fig. 6. Visualization of neural acoustic distances per frame (based on w2v2-en) comparing
represents the global distance value (i.e. the average of all individual frames). The blue contin
180 ms. As a result of the moving average, the blue line does not cover the entire duration
pronunciation are aligned to a single frame in the variant of “living” listed on the x-axis. Note
compared to the top two graphs. See the text for further details.
device. Note that these distances were not normalized, as they
simply compare two recordings. Both distances, however, are
smaller than comparing against rising intonation (revealing a
curvilinear pattern) and a lengthened first syllable (showing
the largest difference at the beginning of the word; the length-
ening is clear from the larger circle denoting an alignment with
similar samples differing in duration).

6. Discussion and conclusion

In this study, we investigated how several self-supervised
neural models may be used to automatically quantify pronunci-
ation variation without needing to use phonetic transcription-
based approaches. We used neural representations to calcu-
late word-based pronunciation differences for English accents
and Norwegian dialects, and compared the results to human
perceptual judgements. While these ratings were provided on
relatively crude (5 to 10-point) scales, and individual raters’
biases or strategies may have affected their ratings, averaging
across a large number of raters for each sample likely yields an
adequate estimate of native-likeness or perceived dialect dis-
tance. Our experiments showed that acoustic distances com-
puted with Transformer-based models, such as w2v2-en,
closely match the averaged human native-likeness ratings for
the English datasets, and that performance greatly depended
on the choice of layer. This finding not only demonstrates that
each of the four variants of “living” to the same normal pronunciation. The horizontal line
uous line represents the moving average distance based on 9 frames, corresponding to
of the sample. Larger bullet sizes indicate that multiple frames in the reference normal
the different scales of the y-axis, reflecting larger differences for the bottom two graphs
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these layers contain useful abstractions and generalizations of
acoustic information, but also shows that the final layers
represent information that is tailored to the target objective
(which was speech recognition instead of our present goal of
quantifying acoustic differences). This result is in line with find-
ings in the field of natural language processing when using
Transformer-based methods with textual data (Tenney, Das,
& Pavlick, 2019; de Vries, van Cranenburgh, & Nissim,
2020). Furthermore, the w2v2 and XLSR models appeared to
be robust against the choice of reference speaker(s) to com-
pare against. Even choosing a single reference speaker
resulted in correlations that were not substantially different
from those that used the full set. Interestingly, correlations on
the basis of some words were not much lower than those on
the basis of the full set of words, suggesting that a smaller
number of words may already yield an adequate assessment
of native-likeness.

Our newly-developed visualization tool helped us to under-
stand these ‘black box’ models, as the visualization showed
where the differences between two pronunciations were lar-
gest (i.e. the locus of the effect). This type of tool could poten-
tially be used to provide visual feedback to learners of a
second language or people with a speech disorder. However,
the actual effectiveness of such an approach would need to
be investigated.

Our results seem to indicate that phonetic transcriptions are
no longer essential when the goal is to use these to quantify
how different non-native speech is from native speech, and
an appropriate Transformer-based model is available. This
suggests that a time-consuming and labor intensive process
can be omitted in this case. While our regression model
showed that phonetic transcriptions did offer additional infor-
mation not present in our neural acoustic-only approach, this

information gain was very limited (an increase in R2 of only
one percent). We furthermore showed that our neural method
captures aspects of pronunciations (such as subtle durational
or intonation differences) that are hard to capture by a set of
discrete symbols used in phonetic transcriptions. Importantly,
in contrast to a previous relatively successful acoustic
approach (Bartelds et al., 2020), our present neural acoustic
approach is relatively unaffected by non-linguistic variation
(i.e. caused by using a different recording device). Neverthe-
less, further detailed research is needed to obtain a better view
of what phonetic information is (not) captured by these models.

In contrast to the performance on the English datasets, we
found that Transformer-based neural representations per-
formed worse when applied to the Norwegian dialects dataset.
However, pronunciations of the Norwegian dialects dataset
were represented by a model which was trained exclusively
or dominantly on English speech. Unfortunately, Norwegian
was not among the pre-training languages included in the mul-
tilingual (XLSR) model, nor available for fine-tuning. We expect
to see improved performance for a Norwegian w2v2 model
(when made available). Unfortunately, creating such a model
is very costly in terms of required resources (generally based
on hundreds of hours of speech) and computing power. At pre-
sent, we estimate that pre-training (even without hyperparam-
eter tuning and optimization) a new w2v2 model for a different
language takes about 150 days on a single state-of-the-art
NVIDIA A100 GPU (costing approximately US$ 10,000). Using
multiple GPUs in parallel reduces this duration, but also
increases the required costs. Fortunately, the cost of these
GPUs will usually decrease over time, and the speed of newly
developed GPUs will increase.

Even though the evaluated architectures were originally
designed for natural language processing, and the specific
acoustic self-supervised neural models were created for
improving performance in the domain of transforming speech
to text, we have shown that the neural representations can
also be successfully applied to an unrelated task in a different
domain. Moreover, we have illustrated that Transformer-based
speech representations are able to model fine-grained differ-
ences in homogeneous speaker groups (e.g., from the same
language background), and adequately generalize over indi-
vidual speaker differences, including gender, which makes
them potentially useful for other tasks as well.

While our results are promising, the application of the
w2v2 approach for modeling pronunciation differences is
only possible when an existing w2v2 model is available for
the language in question, or when sufficient data and com-
puting resources are available to create a new w2v2 model.
In contrast to creating a new w2v2 model for a new lan-
guage, adjusting an existing model for a different task (such
as quantifying differences with respect to pitch contours or
timing patterns) is easier. This only requires an existing
model to be fine-tuned on labeled examples. Generally, the
amount of labeled data (and required GPU time) needed
for fine-tuning is considerably lower compared to the large
quantities of (unlabeled) data needed for pre-training. How-
ever, if such resources are not available, the monolingual
English model appears to be a suitable alternative, generally
outperforming the language-invariant acoustic-only method
proposed by Bartelds et al. (2020). Future work, however,
should be aimed at further investigating how existing high-
resource language w2v2 models may be exploited or
extended when analyzing language variation in low-
resource languages.
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Appendix A

Appendix A.1 provides all relevant technical details about
the neural models used in this paper. Appendix A.2 visualizes
the performance per layer for each of the neural models
applied to different datasets.
A.1. Technical details neural models

A.1.1. wav2vec

wav2vec (w2v) is a self-supervised pre-trained neural
model that has been developed for speech recognition
(Schneider et al., 2019). This model consists of an encoder
network and an aggregator network, and is trained in two
model configurations, namely small and large. In this paper,
we include the large model configuration to compute acoustic
pronunciation distances, because the small model configura-
tion is only trained on a subset of the Librispeech dataset,
whereas the large model configuration uses the full Lib-
rispeech dataset.

The encoder network of the large model configuration con-
sists of seven convolutional layers that create a dense repre-
sentation of audio with a sliding window strategy (stride is
10 ms, window size is 30 ms). The dense output representa-
tions are aggregated by the aggregator network with 12 convo-
lutional layers. The output of the encoder network is based on
30 ms of audio in steps of 10 ms, whereas the output of the
aggregator network is based on windows of 810 ms.

w2v is trained to predict upcoming audio frames of a speech
utterance based on preceding frames. Inspired by word2vec
(Mikolov et al., 2013), the model is trained with a contrastive
loss objective, which is defined as the probability of distin-
guishing the actual frame from ten negative example frames
sampled from the same utterance. To this end, w2v should
be sensitive to content in the actual target frame. A regular loss
objective for target frame prediction would let the model learn
to replicate features that are consistent within their context,
such as voice properties and noise. However, these features
are not only undesirable, but they are also likely to be present
as negative evidence in random negative samples from the
same fragment. Therefore, a contrastive loss objective is more
likely to reach better performance (Smith & Eisner, 2005).

During inference, speech features can be extracted from
the encoder (512 dimensions) or the aggregator (512 dimen-
sions). The encoder represents features within a 30 ms context
window, whereas the aggregator outputs input reconstructions
based on 810 ms of context. We select the features from the
encoder, as initial experiments showed that this resulted in
the highest performance.
A.1.2. vq-wav2vec + BERT

vq-wav2vec is an extension of w2v with the same archi-
tecture, except for the addition of a quantization layer between
the encoder and the aggregator networks (Baevski, Schneider
et al., 2020). This quantization layer creates a discrete repre-
sentation of the dense encoder outputs. Quantization is done
with either the Gumbel Softmax differentiable argmax
approach (Jang, Gu, & Poole, 2017), or with online K-means
clustering (van den Oord, Vinyals, & Kavukcuoglu, 2017).

Discretization of w2v enables the use of algorithms that
require discrete input, such as BERT. BERT is a non-
recurrent neural network architecture, and training method,
that can process sequential data (Devlin et al., 2019). Tradi-
tional neural methods require iterative processing of sequential
data (i.e. recurrent neural networks), but the self-attention
mechanism in the Transformer layers of BERT ensures that
entire sequences can be processed at once (Vaswani et al.,
2017). The self-attention mechanism works like a weighting
mechanism for context in a sequence, and is based on content
and position. Context-based representations are therefore only
influenced by close context that is likely to be informative. The
BERT model has shown to be highly scalable for text process-
ing (Devlin et al., 2019).

Baevski, Schneider et al. (2020) applied a 12 layer BERT
model to the discrete output of vq-wav2vec. The BERTmodel
is trained by masking random spans of 100 ms of audio that
have to be predicted as a pre-training objective, where each
frame has a five percent chance of starting a masked
sequence. The vq-wav2vec algorithm with the BERT exten-
sion was found to outperform the regular vq-wav2vec model
on speech recognition tasks. Therefore, the BERT model may
learn representations of speech that differentiate sounds in
speech more clearly than the vq-wav2vec model itself. More-
over, Baevski, Schneider et al. (2020) show that, when applied
to speech recognition, the full pipeline is slightly more effective
with K-means quantization than Gumbel softmax quantization.
We therefore use the vq-wav2vec algorithm with the BERT
extension. We refer to this variant as vqw2v.

Speech representations can be extracted from multiple lay-
ers in the vqw2v pipeline. The vqw2v model itself can yield
representations after encoding (512 dimensions), quantization
(512 dimensions), and aggregation (512 dimensions). Addi-
tionally, the separately trained BERT model can provide repre-
sentations after each of the 12 Transformer layers (768
dimensions). These Transformer layers can iteratively make
embeddings more informative, but the final layers do not tend
to be the most informative layers for downstream tasks
(Tenney et al., 2019; de Vries et al., 2020). A likely explanation
is that informative abstractions and generalizations in hidden
layers are discarded in favor of actual target output. We
choose the best-performing Transformer layer for our task
based on a validation set from each dataset.
A.1.3. wav2vec 2.0

For the vqw2v algorithm, the Transformer layers in the
BERT model are trained as a separate step after training
vqw2v. For w2v2, the convolutional aggregator in vqw2v is
replaced by a Transformer network (Baevski, Zhou et al.,
2020). This has led to improved performance in speech recog-
nition compared to vqw2v with BERT, suggesting that w2v2
may contain better speech representations. Unlike vqw2v with
the BERT extension, w2v2 is trained as a single end-to-end
model, and therefore the encoder outputs are optimized for
use in the Transformer. The final pipeline of w2v2 consists of
a convolutional encoder, a quantizer, and a Transformer
model. Gumbel softmax quantization is used in w2v2, and
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the best-performing variant of w2v2 in speech recognition con-
tains a fixed amount of 24 Transformer layers.

Whereas the original w2v aggregator is trained to predict
speech frames based on the preceding frames, the w2v2
Transformer aggregator has to predict spans of randomly
masked frames with the full fragment as context. The task of
predicting single random frames is considered to be trivial,
and therefore sequences of 10 consecutive frames are
masked at each randomly sampled position with a probability
of 6.5% for each frame to start a masked sequence. Effectively,
during pre-training, 49% of all frames are masked in blocks
with an average duration of 299 ms. Similarly to w2v, the
w2v2 model is trained with a contrastive loss function based
on negative sampling.

Pre-trained models can be fine-tuned for speech recogni-
tion using labeled data. The models are augmented by adding
a randomly initialized linear projection to the Transformer net-
work. This projection contains an amount of classes that is
similar to the size of the vocabulary of the labeled data. Using
connectionist temporal classification (Graves, Fernández,
Gomez, & Schmidhuber, 2006), probability scores of a textual
output sequence can be obtained based on the vocabulary of
the task.

Similar to vqw2v, embeddings can be extracted from the
encoder (512 dimensions), the quantizer (768 dimensions),
or the (fine-tuned) Transformer layers (1024 dimensions). We
investigate the monolingual English w2v2 model pre-trained
on LS960, and a version that has subsequently been fine-
tuned on 960 hours on labeled data from Librispeech (denoted
by w2v2-en). These models are chosen because they are the
largest models available, and Baevski, Zhou et al. (2020)
showed that increasing the model size improved performance
on all evaluated speech recognition tasks. We select the best-
performing Transformer layer based on a validation set from
each dataset.
A.1.4. XLSR

XLSR builds on w2v2 by extending pre-training to
56,000 hours of speech from a total of 53 languages
(Conneau et al., 2020). These 53 languages are obtained from
the Common Voice dataset (which contains read speech from
36 European languages; Ardila et al., 2020), the BABEL data-
set (conversational telephone speech from 17 Asian and Afri-
can languages; Gales, Knill, Ragni, & Rath, 2014), and
Multilingual Librispeech (audio books from 8 European lan-
guages; Pratap, Qiantong, Sriram, Synnaeve, & Collobert,
2020). Note that the majority of the pre-training data consists
of English speech from Multilingual Librispeech dataset
(44,000 hours), and that some languages occur in more than
one dataset. Consequently, the total number of languages
included during pre-training is 53. Due to the multilingual setup
of the XLSR model, we expect improved task performance
when using our Norwegian dataset, compared to the monolin-
gual English models.
The architecture of XLSR is similar to w2v2, with the excep-
tion that a single set of discrete speech representations is
learned by the quantizer on the basis of the encoder output.
The discrete representations are subsequently shared across
languages, creating connections between the different pre-
training languages.

Similar to w2v2, embeddings can be extracted from the
encoder (512 dimensions), the quantizer (768 dimensions),
or the (fine-tuned) Transformer layers (1024 dimensions). We
use the multilingual XLSR model pre-trained on 53 languages,
and fine-tuned on languages from the Common Voice dataset
(version 6.1) (Ardila et al., 2020). Specifically, we consider
XLSR fine-tuned on English (1,686 hours, denoted by XLSR-
en) and Swedish (12 hours, denoted by XLSR-sv), as they
match (or, in the case of Swedish, is most similar to) the lan-
guages in our evaluation datasets. As before, we select the
best-performing Transformer layer based on a validation set
from each dataset.

A.1.5. DeCoAR

The w2v model uses convolutional layers to create repre-
sentations of audio based on close context, whereas newer
Transformer-based models use the entire audio fragment as
context. DeCoAR uses an alternative method to process the
audio sequences. Before BERT models were used in natural
language processing, language models relied on recurrent
neural models that process items in a sequence, one step at
a time. Representations of each item are, in this case, based
on the preceding representation. The most commonly used
model in natural language processing that uses this method
is ELMo (Peters et al., 2018). This model uses a stacked LSTM
network for creating contextualized word embeddings.

Ling et al. (2020) apply the bi-directional LSTM method, that
was proposed by Peters et al. (2018), to encode acoustic
speech signals. The resulting DeCoAR model takes 40-
dimensional log filterbank features as its input, and is trained
to reconstruct the same features as its output. A filterbank
transformation subsequently extracts frequency bands by
dividing the frequency range into 40 triangular overlapping
bins. These features are extracted with a 25 ms sliding window
and a stride of 10 ms. DeCoAR consists of four bi-directional
LSTM layers, each having 1024 cells. The output representa-
tion of DeCoAR is the concatenation of the forward and back-
ward directions, and therefore consists of 2048 dimensions.

The novel DeCoAR model was shown to outperform w2v on
a set of tasks, including phone classification (Ma, Ryant, &
Liberman, 2021). Therefore, architectural differences of
DeCoAR with w2v-based models may show performance dif-
ferences when applied to other tasks, such as modeling
speech variation.

A.2. Layer performance

The performance per layer for all neural models and data-
sets can be found in Fig. 7, Fig. 8, Fig. 9.



Fig. 7. Pearson correlation coefficients of acoustic distances compared to human accent ratings for different layers in w2v, vqw2v, DeCoAR, and the w2v2 and XLSR models. The
vertical line marks the layer that was chosen as the best-performing layer based on the 25% validation set of the Speech Accent Archive dataset. Layers with a correlation that is not
significantly different (p > 0:05) from the optimal layer are indicated by the thick red line.
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Fig. 8. Pearson correlation coefficients of acoustic distances compared to human accent ratings for different layers in w2v, vqw2v, DeCoAR, and the w2v2 and XLSR models. The
vertical line marks the layer that was chosen as the best-performing layer based on the 50% validation set of the Dutch speakers dataset. Layers with a correlation that is not
significantly different (p > 0:05) from the optimal layer are indicated by the thick red line.
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Fig. 9. Pearson correlation coefficients of acoustic distances compared to human accent ratings for different Transformer layers in the w2v2-en and XLSR-svmodels. The vertical line
marks the layer that was chosen as the best-performing layer based on the 50% validation set of the Norwegian dialects dataset. Layers with a correlation that is not significantly
different (p > 0:05) from the optimal layer are indicated by the thick red line.
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