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Abstract
The Fearless Steps Challenge (FSC) initiative was designed to
host a series of progressively complex tasks to promote advanced
speech research across naturalistic “Big Data” corpora. The Cen-
ter for Robust Speech Systems at UT-Dallas in collaboration
with the National Institute of Standards and Technology (NIST)
and Linguistic Data Consortium (LDC) conducted Phase-3 of
the FSC series (FSC P3), with a focus on motivating speech
and language technology (SLT) system generalizability across
channel and mission diversity under the same training conditions
as in Phase-2. The FSC P3 introduced 10 hours of previously
unseen channel audio from Apollo-11 and 5 hours of novel audio
from Apollo-13 to be evaluated over both previously established
and newly introduced SLT tasks with streamlined tracks. This
paper presents an overview of the newly introduced conversa-
tional analysis tracks, Apollo-13 data, and analysis of system
performance for matched and mismatched challenge conditions.
We also discuss the Phase-3 challenge results, evolution of sys-
tem performance across the three Phases, and next steps in the
Challenge Series.
Index Terms: NASA Apollo, speaker diarization, speaker iden-
tification, speech recognition, conversational analysis.

1. Introduction
The importance of naturalistic datasets in the advent of a tech-
nology revolution led by deep neural networks has become
paramount. With deep learning system performance linearly
scaling with the amount of data provided, naturalistic “Big Data”
corpora serve as a benchmark for developing a competitive edge
in artificial intelligence (AI) domain. Establishing good quality
naturalistic datasets is challenging [1, 2, 3, 4]. There are addi-
tional challenges in developing a corpus with rich information
content across multiple SLT domains [2, 5, 6]. The NASA
Apollo missions data is a collection of 150,000+ hours of audio
with unprompted multi-party conversations recorded over 30
channels. This data contains over 450 personnel in constant
air-to-air, air-to-ground, and ground-to-ground communication
working collaboratively to solve time-critical challenges. Speech
and natural language systems can significantly benefit utilizing
this data. The Fearless Steps Challenge (FSC) series has led the
efforts in promoting such system development by annotating a
small portion of this Apollo corpus (115 hours) and establishing
challenge tasks to benchmark SLT systems [6, 7, 8].

The goal of FSC Phase-3 (FSC P3) is to assess the robustness
of speech and language systems across channel, noise, speech,

speaker, and semantic variabilities. The FSC P3 set provides
such a test platform, sourcing its data from multiple channels
from Apollo-11 and Apollo-13 missions [9, 10, 11].

FSC P3 was conducted in collaboration with the National
Institute of Standards and Technology (NIST) and Linguistic
Data Consortium (LDC) from February through March of 2021.
Nine participating organizations, with 14 task-specific teams con-
tributed 235 system submissions. Phase-3 evaluation reported
state-of-the-art (SOTA) results on 3 of the 8 challenge tracks.
The current edition of the FSC was run entirely online using the
NIST OpenSAT evaluation platform 1. The web platform sup-
ported a variety of services including evaluation registration, data
distribution, system output submission, submission validation,
scoring, and system description/presentation uploads [5, 12, 13].

2. Challenge Tasks
The NASA Apollo Missions audio data were recorded on 30-
channel analog tapes ranging from 14 to 17 hours in duration.
Large data streams of this nature are often a hindrance in ef-
fective development of SLT systems. In an effort to stream-
line such development, 30-minute audio chunks were annotated
from the most high-impact events in Apollo 11 and Apollo 13
missions. These chunks have been presented in the FSC cor-
pus as “audio streams”. These streams of undiarized audio are
supplemented by annotation files with diarized labels. Essen-
tially, audio streams for Training (Train) and Development (Dev)
sets provided to challenge participants contain a single markup-
styled annotation file per stream. Each annotation file contains a
ground-truth label or transcription per single-speaker utterance.
Participants are expected to diarize the Evaluation (Eval) set au-
dio streams in addition to the primary task. This requires using
multiple systems to process downstream tasks, often propagating
error at each functional block. FSC P2 established the necessity
for developing separate speaker diarization (SD) and automatic
speech recognition (ASR) tracks to streamline the development
of effective clustering and acoustic models/language models re-
spectively [3, 4, 14]. This format has been extended for FSC
P3, which provides separate tracks for diarized “audio segments”
in the speaker diarization (SD), automatic speech recognition
(ASR), and conversational analysis (CONV) tasks. The entire
list of tasks and tracks available for the FSC P3 are presented
below. The five original channels (FD, MOCR, EECOM, GNC,
NTWK) used in the FSC P1 and P2 have been preserved in Train
and Dev sets, with no additions to the data-sets [6, 7, 8].

1https://sat.nist.gov/fsc3
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• TASK 1: Speech Activity Detection (SAD)

• TASK 2: Speaker Identification (SID)

• TASK 3: Speaker Diarization

◦ (3.a.) Track 1: using system SAD (SD track1)
◦ (3.b.) Track 2: using reference SAD (SD track2)

• TASK 4: Automatic Speech Recognition

◦ (4.a.) Track 1: using system SAD (ASR track1)
◦ (4.b.) Track 2: using diarized audio (ASR track2)

• TASK 5: Conversational Analysis

◦ (5.a.) Track 1: using system SAD (CONV track1)
◦ (5.b.) Track 2: using diarized audio (CONV track2)

Tasks established in previous challenges are still core speech
tasks, and do not directly benefit spoken language understanding
(SLU) of the multi-party conversations. With SOTA word error
rates (WER) as high as 24%, SLU systems cannot be expected
to effectively extract meaningful information regarding topic,
sentiment, emotion, or semantic context. This effect was ob-
served in the FSC P1 sentiment detection task. Accordingly, a
new task with separate tracks was created with an aim to identify
key conversational moments in the data [9, 15, 16, 17].

2.1. Conversational Analysis
Methodologies to identify salient conversations in continuous
audio streams can significantly reduce the cost of information re-
trieval [18, 19]. These methodologies are valuable for analyzing
Apollo Missions data, which can have important conversations
during intermittent time-critical events, followed by large peri-
ods of inactivity or normal conversations. Identification of such
conversational “Hotspots” can help both STEM and non-STEM
researchers parse through 150,000 hours of data and retrieve
segments with high value semantic content. In the context of the
Apollo Missions data, these conversational cues can be character-
ized as an intersection of the conventional tasks; ‘topic detection’
and ‘extractive summarization’[20, 21]. A total of 25 hotspots
critical to successful deployment of the Apollo Missions were
identified as conversational “Hotspots” and presented as diarized
segments for a classification task (CONV track2). The task of di-
arizing and identifying hotspots in continuous audio streams was
also presented as a separate track for FSC P3 (CONV track1).

2.2. Challenge Deployment
The NIST OpenSAT web platform2 was used to conduct FSC
P3. Participants were allowed to download Train, Dev, and Eval
sets after agreeing to the terms and conditions of the Challenge.
The scoring toolkit developed for the FSC P2 was used for
validation and back-end scoring in the platform. Participants
were provided with basic analytics for each submission to assist
their system development efforts. Every team was allocated a
single submission slot per task/track with multiple submissions
(up to 3 per day) allowed to update the system performance.

2.3. Performance Metrics
The performance metrics and conditions for FSC P3 remained
largely consistent with conditions for FSC P2. A NIST defined
detection cost function (DCF) measure was used for scoring the

2https://sat.nist.gov

speech activity detection (SAD) task, with a forgiveness collar
of 0.25 seconds, which was reduced from the collar duration
of 0.5 seconds for FSC P2. Both tracks for SD and ASR were
evaluated using diarization error rate (DER) and word error rate
(WER) respectively for the same testing conditions as FSC P2.
The Speaker Identification (SID) task performance metric was
updated from Top-5 % Accuracy (Top-5 Acc.) to Top-3 % Ac-
curacy (Top-3 Acc.). The newly introduced CONV tracks were
evaluated using separate metrics. Track-2 using diarized seg-
ments was evaluated using Top-3 % Accuracy, and Track-1 using
audio streams was tested using the measure Jaccard error rate
(JER) [22, 23, 24]. The Jaccard index has been traditionally used
in image segmentation and more recently in speaker diarization
in the DIHARD Challenge series [22, 25]. JER as an initial mea-
sure provides a good representation for a task involving diarizing
and identifying hotspot labels. For each reference speaker ref
the speaker-specific JERref is computed as:

JERref(%) =

(
FA+Miss

Total

)
× 100, (1)

where
• Total is the total reference speaker time; that is, the sum

of the durations of all reference speaker turns,
• FA is the total system speaker time not attributed to a

reference speaker,
• Miss is the total reference speaker time not attributed to a

system speaker.
The JER metric for CONV track1 could be replaced with a
different metric for future Phases depending on the evolution of
the data and labels developed for this task.

3. Data
Robustness and efficacy of SLT systems can be measured by
their ability to adapt to real-world data with varying and often
previously unseen acoustic characteristics. In this section we
describe the training and testing conditions used in FSC P3 to
evaluate system adaptability and robustness.

3.1. Unseen Channel & Mission
Every channel in the Apollo Missions is associated with different
task. Speech density, conversational content, and speakers can
vary drastically with each channel. The operations and propul-
sion (OPS&PRO) channel from Apollo-11 was annotated to test
system performance over such unseen channel characteristics. A
total of 5 hours were selected from three Apollo-13 channels to
form the unseen mission data, providing additional variability
in channel noise, air-to-ground communication noise, different
speakers, and speech conversations markedly different to conver-
sations in the Apollo-11 Mission.

3.2. General Statistics
Table 3 summarizes the overall statistics for the audio streams
data, and highlights the variability within the Eval set. Tables 1
and 2 present statistics on the diarized segments for the SID
and CONV track2 tasks, while Table 4 provides insight into the
distribution of segments in the Train, Dev and Eval sets.

3.3. Evaluation Set Variability
The unseen channel and mission data present in the Eval set are
set up in a blind format. Participants were not provided with
mission or channel labels during the evaluation phase, thereby
making it possible to evaluate systems for their generalizability
to unseen data conditions.
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Table 1: General statistics for the SID task. The mean, median, minimum, and maximum values
for cumulative speaker durations, and individual speaker utterances are all expressed in seconds [7]

Data set # Speakers Speaker Duration (s) Speaker Utterances (s)
mean median (min , max) mean (min , max) total

Train 218 505.5 106.7 (6.89 , 11254.36) 4.03 (1.84 , 16.95) 27336
Dev 218 118.1 24.2 (3.13 , 2596.18) 4.04 (1.78 , 16.95) 6373
Eval 218 264.3 38.2 (3.19 , 5834.46) 4.09 (1.8 , 16.22) 14077

Table 2: General statistics for the CONV track2 task. The mean, median, minimum, and maximum values
for cumulative label durations, and individual labels are all expressed in seconds.

Data set # Hotspots Hotspot Duration (s) Hotspot Utterances (s)
mean median (min , max) mean (min , max) total

Train 25 1546.8 796.4 (193.26 , 6274.85) 2.4 (0.5 , 30.4) 16059
Dev 25 464.8 233.7 (45.11 , 2626.05) 2.5 (0.5 , 33.2) 4662
Eval 25 976.3 435.9 (59.05 , 8036.36) 2.6 (0.5 , 29.96) 9360

Table 3: Overall Statistics of audio streams for the FSC P3. The
mean, min, and max values are expressed in seconds.

Train Dev Eval
A-11 A-13 Unseen Total

# Streams 125 30 40 10 18 68
Dur. (hrs) 63.5 15.3 20.1 5 9.1 34.4
% Speech 29.4 32.5 34.4 33.4 37.3 35
#Spkrs/Stream 19 24 20 13 25 20

Table 4: Duration Statistics of audio segments for ASR track2.
The mean, min, and max values are expressed in seconds [7]

Data set Segments Utterance Duration (s)
mean min max

Train 35,473 2.85 0.10 70.37
Dev 9,203 2.97 0.12 67.39
Eval 21,846 2.98 0.10 162.75

Table 5: Baseline Results for all tasks/tracks in FSC P3 [7]
Fearless Steps Phase-3 Baseline Results

Task Metric Dev (%) Eval (%)
SAD DCF 12.84 15.16
SD track1 DER 79.72 88.27
SD track2 DER 68.68 77.91
SID Top-3 Acc. 75.20 72.46
ASR track1 WER 83.80 92.3
ASR track2 WER 80.50 86.4
CONV track1 JER 58.6 71.5
CONV track2 Top-3 Acc 67.1 54.2

Figure 1: CNN-Saliency network illustration, used as baseline
system for CONV track1 and CONV track2 [26]

4. Results
In this section, we analyze baseline performance for all tasks, and
assess system generalizability factor for all FSC3 submissions.

4.1. Baseline Results
All the original FS2 baseline systems were used without modifi-
cations for evaluating the FSC P3 Eval set [27, 28, 29] with the
exception of the extractive summarization tracks ’CONV track1’
and ’CONV track2’. The baseline results for all tasks are re-
ported in Table 5. We notice a degradation in performance on the
FSC3 Eval sets for all tasks/tracks, caused by the addition of the
unseen channel and mission data. Since most of the baseline sys-
tems are unsupervised and rely on core acoustic features [30, 31],
their degraded performance indicates added acoustic complexity
in the Eval set due to the unseen mission and channel inclusion.
The baseline system used for both tracks of the conversational
analysis task was originally developed for emotion detection [26].
The convolutional network illustrated in Figure 1 is designed
to aggregate high level context over time (log-Mel-Filterbank
feature frames) to generate a single hotspot label.

4.2. Best Systems Comparison
Table 6 provides a comparative illustration of the improvements
in SOTA for Phase-2 and Phase-3 [32, 33, 34, 35]. We report
significant improvements in FSC3 Top system performance over
FSC2 for SID task, ASR track2 and both SD tracks. However,
the SOTA for SAD and ASR track1 tasks are maintained from
FSC2. Comparisons to the FSC2 systems have been conducted
over the same data evaluated by participants in FSC2. We also
observe that the top systems for every task/track were able to
adapt efficiently to the unseen channel data.

4.3. System Generalizability
Figure 2 illustrates six comparative performance distribution
plots, one for each task/track. Scores from all FSC P3 system
submissions were used to fit four distributions per task/track.
System results for audio from Apollo-11 were used to form
the green outlined distribution. Likewise, red outlined distri-
bution represents Unseen Mission, and blue represents Unseen
Channel. Cumulative FSC P3 Eval set results form the yellow
outlined distribution. We use these distributions to visually rep-
resent the disparity of system outputs between seen and unseen
channel/mission. While the top 2 systems were able to gener-
alize well to the unseen mission and channel data, a majority
of the systems had degraded performance. The unseen channel
performance for all tasks was seen to be closely related to the
seen channel data, and in some cases even showed improved
performance. ASR track2 and SD track1 saw significantly de-
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Figure 2: Distribution of system submission results between the Apollo-11 (green), Unseen Channel (blue), and Apollo-13 (red)
segments/streams of the Eval set. Distribution over the entire FSC P3 Eval set is outlined (yellow) for reference.

Table 6: Comparison of the best systems developed for all FSC P2 and P3 challenge tasks. FSC3 (in bold) represents system performance
over the entire blind set provided for participants. Relative improvement of top-ranked system per task in the FSC P3 seen channel data
(FSC3-A11) (underlined) over FSC P2 evaluation set is illustrated. FSC3-A13 and FSC3-UnkCh represent the top system performance
for the Unseen Mission and Unseen channel data respectively.

Comparison of Best System Submissions on FSC3 Eval set (and sub-sets)
Task FSC2 (%) FSC3 (%) FSC3-A11 (%) FSC3-A13 (%) FSC3-UnkCh (%) Rel. Imp. (%)
SAD 1.07 1.47 1.16 2.37 1.67 -7.57 %
SID 92.39 83.27 93.26 23.77 85.16 12.9 %
SD track1 28.85 42.20 19.92 149.1 32.33 30.95 %
SD track2 26.55 12.32 9.82 19.05 14.15 53.59 %
ASR track1 24.01 29.96 26.87 47.94 26.82 -11.9 %
ASR track2 24.26 22.85 21.69 100 21.82 10.59 %

graded performance for Unseen Mission (flat distribution for
ASR track2 indicating no transcriptions generated by competing
systems for Apollo-13 audio segments). Based on this analysis,
we hypothesize that system generalizability is a key component
in developing systems for the remaining Apollo Missions.

5. Discussion
We notice that system generalizability was positively correlated
with better overall performance. We report that the systems com-
peting in the FSC P3 showed marginal degradation performance
for channel variabilities, but significantly lacked the ability to
generalize to unseen mission data. The availability of 9 hours of
Unseen Channel data to only 5 hours of the Unseen Mission data
may be a factor in improved relative performance between the
two sub-sets.The imbalance in these Eval sub-sets could have
caused some bias in the overall submission results. Notwith-
standing the biases, developing robust systems for the remaining
9 Apollo Missions would require algorithms that could adapt
to the variabilities introduced with each unseen Mission. We
also report no participation for the conversational analysis tracks.
This may have resulted from insufficient documentation on the
task and hotspot label development. We aim to promote this task
in the upcoming challenges by providing detailed descriptions of

each hotspot event label in addition to an open-sourced baseline
system made available ahead of the next challenge.

6. Conclusions
Through FSC Phase-3, we introduced a new challenge task that
aims to extract high level context from conversations. We tested
system capability to generalize for previously unseen channel
and mission variability. In the next Phase of the Challenge we
plan to extend the Training and Development datasets to include
audio from Apollo missions ‘8’ and ‘10’. In conclusion, we
assert the need for further development in SLT systems for natu-
ralistic data. Future efforts in the Fearless Steps Challenge series
will increasingly involve SLT development of highly adaptable
systems that are robust to out-of-domain data.
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