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Abstract

INTRODUCTION: Screening for Alzheimer’s disease neuropathologic change (ADNC)

in individuals with atypical presentations is challenging but essential for clinical

management.We trained automatic speech-based classifiers to distinguish frontotem-

poral dementia (FTD) patients with ADNC from those with frontotemporal lobar

degeneration (FTLD).

METHODS: We trained automatic classifiers with 99 speech features from 1 minute

speech samples of 179 participants (ADNC = 36, FTLD = 60, healthy controls

[HC] = 89). Patients’ pathology was assigned based on autopsy or cerebrospinal fluid

analytes. Structural network-based magnetic resonance imaging analyses identified

anatomical correlates of distinct speech features.

RESULTS: Our classifier showed 0.88 ± 0.03 area under the curve (AUC) for ADNC

versus FTLD and 0.93 ± 0.04 AUC for patients versus HC. Noun frequency and pause

rate correlated with gray matter volume loss in the limbic and salience networks,

respectively.

DISCUSSION:Brief naturalistic speech samples canbeused for screeningFTDpatients

for underlying ADNC in vivo. This work supports the future development of digital

assessment tools for FTD.
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Highlights

∙ We trained machine learning classifiers for frontotemporal dementia patients using

natural speech.

∙ We grouped participants by neuropathological diagnosis (autopsy) or cerebrospinal

fluid biomarkers.
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2 CHO ET AL.

∙ Classifiers well distinguished underlying pathology (Alzheimer’s disease vs. fron-

totemporal lobar degeneration) in patients.

∙ We identified important features through an explainable artificial intelligence

approach.

∙ This work lays the groundwork for a speech-based neuropathology screening tool.

1 BACKGROUND

Alzheimer’s disease (AD) affects > 50 million individuals globally,1

and much emphasis has been given to cognitive profiling of AD,

including in the language domain. The pathology of AD consists of

abnormal accumulation of extracellular amyloid beta (Aβ) plaques and
intracellular neurofibrillary tangles. Previous studies have shown that

individuals with amnestic AD presentation produce an abundance

of generic words, circumlocutions, and few content units.2–8 One of

the non-amnestic AD presentations, logopenic variant primary pro-

gressive aphasia (lvPPA), is characterized by slow speaking rate with

frequent partial words or false starts and frequent, long pauses due

to word-finding difficulties.9,10 A recent study identified several lin-

guistic similarities between people with the amnestic AD presentation

and those with a non-amnestic lvPPA presentation with AD neu-

ropathologic change (ADNC), suggesting that speech features may be

useful in identifying individuals with ADNC, regardless of their clinical

presentation.11

Early in vivo identification of underlying ADNC can be crucial

to the success of future disease-modifying treatments. However,

ADNC is observed not only in individuals with the typical, amnestic

clinical presentation but also in people with atypical, non-amnestic

presentations.12,13 Atypical presentations of ADNCwith predominant

linguistic and behavioral changes can present a challenging differ-

ential diagnosis among subtypes of frontotemporal dementia (FTD)

due to frontotemporal lobar degeneration (FTLD), where common

presentations include behavioral variant FTD (bvFTD) and primary

progressive aphasia (PPA). Because novel therapeutics target underly-

ing neuropathologies, it is essential to differentiate FTD patients with

underlyingADNC from thosewith underlying FTLD.Developing in vivo

assessments that identify the underlying pathology will help better

guide patient management.

Indeed, speech has been studied as an objective tool for auto-

matically differentiating people with amnestic AD presentation from

healthy controls (HC). For example, a large number of lexical, syntactic,

and acoustic features was used to classify patients with the amnes-

tic AD presentation versus HC in the DementiaBank corpus with 82%

accuracy.14 Jarrold et al. also implemented a similar approach and

showed 88% accuracy with 18 participants (9 AD and 9 HC).15 A more

recent study used a large dataset and a natural language processing

(NLP) approach to differentiate individuals with dementia from HC

with 87.1% accuracy and to distinguish individuals with mild cogni-

tive impairment (MCI) from HC with 71.2% accuracy.16 Other reports

based on language and speech features ranged from 70% to 89.6%

accuracy.17–25

While previous studies have shown promising results with speech

features classifying the amnestic AD presentation versus HC, a clini-

cally meaningful challenge that has not been addressed is distinguish-

ing underlying ADNC from FTLD pathology in individuals presenting

with non-amnestic phenotypes. In this study, we used digital speech

features that were extracted with automatic lexical and acoustic pro-

cessing pipelines from digitized 1 minute picture descriptions, and

we trained machine learning classifiers to automatically classify par-

ticipants with clinical FTD and biological evidence of the underlying

pathology (based on available autopsy or cerebrospinal fluid [CSF]

biomarkers) into underlying ADNC or FTLD groups. We asked the

following research questions: (1) Can speech and language features

distinguish pathology in individuals with non-amnestic FTD pheno-

types? (2)What features distinguish individualswithADNC from those

with FTLD? (3) How does a speech-based classifier perform compared

to classifiers trained with traditional cognitive tests and basic demo-

graphics? (4)What specific features are related to patterns of regional

brain atrophy in participants? We trained machine learning classifiers

with different feature sets and applied an interpretable artificial intel-

ligence (AI) approach to answer these questions. We also performed

neuroimaging analyses relating speech features to regional brain vol-

umes to provide anatomical validation for this biologically defined

sample. The main goal of our study was to test machine learning

classifiers trained with speech features extracted from brief natural-

istic speech samples to identify the underlying ADNC versus FTLD

pathology of participants presenting with a non-amnestic phenotype.

2 METHODS

2.1 Participants

We conducted a retrospective study and used brief oral picture

descriptions that were produced by 179 participants (Table 1). All

patients (n=96)were clinically evaluated by expert neurologists (M.G.,

D.J.I.) at the time of recording at the frontotemporal degeneration

center (FTDC) in the neurology department of the Hospital of the

University of Pennsylvania, and they were classified at a weekly con-

sensus meeting at the FTDC using established clinical criteria.9,26,27

Patients presented with various clinical phenotypes, including lvPPA,

non-fluent/agrammatic variant PPA (naPPA), and semantic variant PPA
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CHO ET AL. 3

(svPPA) as detailed in Table 1. We note that one svPPA patient and

another lvPPA patient in the AD group later developed (>1 year)

clinical symptoms of posterior cortical atrophy and dementia with

Lewy bodies, respectively. Patients were included if they had either

a post mortem neuropathologic diagnosis or an in vivo CSF analyte

profile suggestive of the underlying neuropathology based on cut-

offs previously validated in autopsy series.28,29 We excluded patients

with primary psychiatric conditions or other non-neurodegenerative

conditions that could affect speechor cognition. Autopsy analyses clas-

sified the level of ADNC from “none” to “high” using an established

scoring system when available.30,31 We grouped patients by their

underlying pathology (Table 1). Twenty-one participants had primary

ADNC based on CSF (phosphorylated-tau [p-tau]/Aβ42 ≥ 0.128 and

total-tau [t-tau]/Aβ42≥ 0.3429; n= 21); 15 patients had a primary neu-

ropathological diagnosis of ADNC (high likelihood) per autopsy.30 Sixty

patients with FTD clinical symptoms had FTLD pathology by either

CSF (p-tau/Aβ42 < 0.128 and t-tau/Aβ42 < 0.3429; n = 36) or a neu-

ropathological diagnosis per autopsy (e.g., corticobasal degeneration,

Pick’s disease, FTLD with TDP-43 immunoreactivity pathology, FTD

with parkinsonism linked to chromosome17, progressive supranuclear

palsy, n = 24), with negligible AD co-pathology (none or low ADNC).

One FTLD patient with intermediate ADNC was excluded from the

dataset due to the clinically relevant ADNC comorbidity. Exclusion

criteria for the autopsy series included clinical presentations other

than FTD, primary pathology other than AD or FTLD, and co-occurring

neurological or psychiatric conditions.

Among the 83 healthy participants, 45 were tested at the FTDC

and had Mini-Mental State Examination (MMSE) scores. The other 38

healthy participants were volunteers who remotely provided their pic-

ture descriptions via a webpage that we designed to collect speech

samples fromHC (speechbiomarkers.org). The remote participants did

not have MMSE scores available. All participant groups did not dif-

fer in demographic characteristics, including age, sex ratio, and years

of education. The ADNC and FTLD groups had similar demographic

characteristics, including age and disease duration. The ADNC group

had lower MMSE scores than the FTLD group on average (P = 0.028;

Table 1), but they were still within the range of intermediate disease

severity.

2.2 Data collection

We digitally recorded the participants’ oral descriptions of the Cookie

Theft picture from the Boston Diagnostic Aphasia Examination.32 The

mean duration of the recordings was 69.8 ± 25.2 seconds. Record-

ings were transcribed by trained annotators at the Linguistic Data

Consortium (LDC) of the University of Pennsylvania using a standard

semi-automatic annotation protocol. Only the earliest recording from

each participant was included in the study. The study was approved by

the institutional reviewboardof theHospital of theUniversity of Penn-

sylvania, and we certify that the study was performed in accordance

with the ethical standards as in the 1964 Declaration of Helsinki and

its later amendments.

RESEARCH INCONTEXT

1. Systematic review: The authors conducted a literature

review using traditional sources, such as PubMed, as well

as meeting abstracts and presentations. While speech-

based automatic classification tasks of clinical pheno-

types (e.g., distinguishing participants with the amnes-

tic Alzheimer’s disease (AD) presentation from healthy

speakers) have been frequently attempted, automatic

classification of underlying pathology has not yet been

studied.

2. Interpretation: Our findings demonstrate that speech-

based automatic classifiers effectively distinguished

underlying pathology (AD vs. frontotemporal lobar

degeneration [FTLD]) among individuals with fron-

totemporal dementia (FTD) phenotypes. We also

identified distinct speech patterns in participants

with AD neuropathologic change compared to those with

FTLD.

3. Future directions: We plan to validate our findings in a

larger dataset. This line of work will lay the groundwork

for developing a convenient screening tool for clinical

trials targeting the neuropathology of patients.

2.3 Features

2.3.1 Lexical features

Lexical features were extracted using our automated lexical pipeline.

The pipeline automatically tagged the part-of-speech (POS) category

of all tokenized words, using spaCy,33 which is a natural language pro-

cessing library (NLP) in Python. The pipeline used one of the large

language models of spaCy (“en_core_web_lg”) for English. It automat-

ically tallied the count of each POS category and calculated the POS

counts per 100words, controlling for the total number ofwords in each

description.

The pipeline also automatically rated words for concreteness,34

semantic ambiguity,35 word frequency,36 age of acquisition (AoA),37

and word familiarity,38 based on published norms. The concreteness

measure indicates how concrete or abstract a word’s meaning is on a

scale from 1 (most abstract) to 5 (most concrete). Semantic ambiguity

measures the potential number of a word’s meaning in a given context,

where a high score means high ambiguity. Word frequency was calcu-

lated from the SUBTLEX-US corpus36 and word frequency per million

words was transformed with a log10 scale for simplicity. AoA indicates

the average age in years when children acquire a given word, and word

familiarity is a z scored scale of the number of people who answered

that they knew a given word. The pipeline also measured word length

as the number of phonemes using the CMU pronouncing dictionary39

in the NLTK package.40 After defining these scores, the pipeline calcu-

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13748, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://speechbiomarkers.org


4 CHO ET AL.

TABLE 1 Mean (SD) demographic and clinical characteristics of participants.

AD (N= 36) FTLD (N= 60) HC (N= 83) P value

Age (years) 64.0 (7.9) 64.7 (7.2) 66.0 (8.3) 0.391

Sex,N (%) 0.889

Female 19 (52.8%) 29 (48.3%) 43 (51.8%)

Male 17 (47.2%) 31 (51.7%) 40 (48.2%)

Education (years) 16.0 (2.9) 15.2 (3.1) 16.3 (2.2) 0.051

Disease duration (years) 4.0 (1.8) 3.6 (2.0) NA

Clinical phenotype <0.001

ALS-FTD 0 (0.0%) 2 (3.3%) 0 (0.0%)

bvFTD 0 (0.0%) 16 (26.7%) 0 (0.0%)

CBS 0 (0.0%) 3 (5.0%) 0 (0.0%)

lvPPA 28 (77.8%) 3 (5.0%) 0 (0.0%)

naPPA 3 (8.3%) 13 (21.7%) 0 (0.0%)

HC 0 (0.0%) 0 (0.0%) 83 (100.0%)

PSP 0 (0.0%) 3 (5.0%) 0 (0.0%)

svPPA 5 (13.9%) 20 (33.3%) 0 (0.0%)

ADNC <0.001

High 12 (33.3%) 0 (0.0%) 0 (0.0%)

Low 0 (0.0%) 10 (16.7%) 0 (0.0%)

None 0 (0.0%) 12 (20.0%) 45 (54.2%)

N/A 24 (66.7%) 38 (63.3%) 38 (45.8%)

MMSE (0-30) 20.6 (6.1) 23.4 (5.6) 29.2 (1.0) <0.001

Abbreviations: AD, Alzheimer’s disease; ADNC, Alzheimer’s disease neuropathologic change; ALS-FTD, amyotrophic lateral sclerosis frontotemporal demen-

tia; bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome; FTLD, frontotemporal lobar degeneration; HC, healthy control; lvPPA,

logopenic variant primary progressive aphasia; MMSE, Mini-Mental State Examination; naPPA, nonfluent/agrammatic variant primary progressive aphasia;

PSP, progressive supranuclear palsy; SD, standard deviation; svPPA, semantic variant primary progressive aphasia.

lated the mean scores of these measures across all words, all content

words, and all nouns per participant.

Last, the pipeline automatically calculated lexical diversity, that is,

how diverse one’s word usage was in the picture description, using the

moving-average type-token ratio (MATTR).41 This method calculates

a type-token ratio (TTR) for a fixed length of the window, moving the

window one word at a time from the beginning to the end of a descrip-

tion, and then it averages all calculated TTR scores. MATTR has been

described as one of the most reliable measures for calculating lexical

diversity.42

The calculated average lexical scores, POS counts per 100 words,

and lexical diversity scores were used for model training. A detailed

description of this automatic lexical pipeline has been published

previously.43,44

2.3.2 Acoustic features

Our automatic acoustic pipeline used an in-house Gaussian mixture

models-hidden Markov models-based speech activity detector (SAD)

developed at LDC to segment audio files into speech segments and

silent pauses. The minimum duration of speech and pause segments

was set at 250 and 150 ms, respectively. After segmenting the audio

files, we visually reviewed the segments to validate the SAD outputs.

Pause segments at the beginning and end of each recording were

excluded, as well as pauses after an interviewer’s prompt. We also

excluded the interviewer’s speech segments.

Using the time information from the SAD outputs, the acoustic

pipeline automatically calculated durational measurements, includ-

ing mean speech segment duration, mean silent pause duration, total

speech time, total pause time, total time (= total speech+ total pause),

pause count per minute of speech (= number of pauses/total speech

time), speech segment count, pause rate per minute, and percent of

speech (= total speech/total time).

Additionally, the pipeline pitch-tracked all speech segments with

Praat45 and calculated the 10th to 90th percentile pitch estimates

in fundamental frequency (f0) for each speech segment with a uni-

form pitch setting of 75–300 Hz. To normalize physiological differ-

ences in voice, we converted pitch values from Hz to semitones

(st) using the 10th percentile of each participant as a baseline:

st = 12*log2(f0/baseline f0). We used the converted 90th per-

centile as a measure of the pitch range of a speaker. A detailed

description of this automatic acoustic pipeline has been published

previously.10
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2.3.3 Feature sets

To investigate how well speech features predict patients’ underlying

pathology, we experimented with five feature sets when training mod-

els. The first set includedMMSE and demographics (age, sex, education

level) only and the performance of this set served as a baseline model.

The second feature set included speech features only (90 lexical + 9

acoustic features). The third (99 speech features + 3 demographics)

and fourth feature sets (99 speech features + MMSE) added demo-

graphics andMMSE, respectively, to speech features to assesswhether

demographic characteristics orMMSEhad additional predictive power

in predicting patients’ underlying pathology. The last feature set (99

speech features+ 3 demographics+MMSE) included speech features,

demographics, andMMSE together.

2.3.4 Feature selection

Because we had a large number of features (maximum N = 103)

with speech features compared to the number of samples (maximum

N = 179 participants), we used the elastic net regression as a fea-

ture selection method to reduce the number of features. The elastic

net regression combines the penalty functions of the LASSO and ridge

regressionmodels, L1andL2 regularizations, respectively, toovercome

the limitations of those models. When using the elastic net for feature

selection,we varied the L1 regularization ratio from0.1 to 1with an0.1

increment and the value of alpha, which is a constant term that mul-

tiplies the penalty terms in the L2 regularization: [0.001, 0.005, 0.01,

0.05, 0.1, 0.5, 1]. We did not decrease the feature dimensions to look

at individual features that were selected, and we interpret the results

based on feature importance values, which is explained in more detail

below.

2.4 Model training

Using the five feature sets (Section 2.3.3), we trained machine learn-

ing classifiers for two binary classification tasks: one for participants

with ADNC versus those with FTLD (n = 96) and the other for HC

versus patients with either pathology (n = 176). For each binary task

(n= 2) and feature set combination (n= 5), we trained three classifiers:

support vectormachine (SVM), randomforest (RF), andmulti-layerper-

ceptron (MLP). For all models, missing values, including MMSE scores

ofHCparticipants fromspeechbiomarkers.org,were imputedusing the

SimpleImputation function, and all feature values were standardized

with the StandardScaler function in scikit-learn46 in Python 3.7. Using

10 train–test split folds, all models were trained on the nine folds (the

train set) and tested on the 10th fold (the test set). During this process,

features were selected using the elastic net regression for each train

set. This process was repeated 10 times to test themodel performance

in all the sampleswehad, andwe report thebest averagedperformance

of the models over 10 folds after hyperparameter tuning and feature

selection.

2.5 Feature interpretation

From the best performing model that was trained with only speech

features for each binary task, we counted the frequency of selected

features in 10 folds (i.e., how many times a feature was selected). Fea-

tures that are selected at least 9 times out of 10 folds were reported

in the results.We also computed Shapley additive explanations (SHAP)

values47 of themost frequently selected features to explain the impor-

tance of the selected features in the best performing speech models.

SHAP values are frequently used in the literature to provide an expla-

nation of a model’s prediction by computing the relative impact of

each feature on the prediction. We further explored group differ-

ences in the most frequently selected features. First, we decided if the

data were normally distributed and the variances of the two groups

were homogeneous. Depending on the results, we performed t test

or Wilcoxon signed rank tests to compare the groups and reported

significant results.

2.6 Imaging analysis

High-resolution T1-weighted magnetic resonance imaging (MRI) was

available for a subset of participants within 10 months of the speech

sample (median 1 month, mean 2.04 months, range 0–10 months).

All images were acquired on a 3T Siemens scanner. Most images

(ADNC = 20, FTLD = 28, HC = 16) were acquired using an axially

acquiredmagnetization prepared rapid acquisition gradient echo (MP-

RAGE) protocol with repetition time = 1620 ms; echo time = 3.87 ms;

flip angle = 15◦; matrix = 192 × 256, 160 slices, and resolu-

tion = 0.9766 mm × 0.9766 mm × 1.0 mm. Additional participants

(ADNC = 1, FTLD = 9) were imaged using a sagittal MP-RAGE

sequence with repetition time = 2300 ms, echo time = 2.91 ms, flip

angle= 9◦, matrix= 240 × 256, 176 slices, and resolution= 1.055mm

× 1.055 mm × 1.2 mm. A sagittal multiplanar reconstruction multi-

echo (4) virtual navigator sequence with repetition time = 2400 ms,

echo time = 1.96 ms, flip angle = 8◦, matrix = 320 × 320, 224 slices,

and resolution = 0.8 mm × 0.8 mm × 0.8 mm was used to acquire

the remaining images (ADNC = 2, FTLD = 10, HC = 5). Images were

processed using the antsCorticalThickness pipeline.48 Cortical gray

matter (GM) volumes from the Yeo 17 networks49 were summarized

per hemisphere to create 34 network regionswhichwere each normal-

ized for age and sex to account for associated population differences.

Linear models were used to compare GM volumes between partici-

pants with ADNC and HC and between those with FTLD and HC to

establish atrophy patterns for each patient group. ADNC and FTLD

were also contrasted to identify differences in atrophy localization

between ADNC and FTLD directly. Within each patient group, linear

models were then used to determine relationships between speech

features and network volumes in atrophied regions for the respective

patient group toHCcomparisons. The speechmeasures included in this

regression analysis were those most frequently selected in the best

performing speechmodel where the patient groupmeanswere further

than one standard deviation from the control means. All linear models
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6 CHO ET AL.

TABLE 2 Classification results of ADNC versus FTLD.

Value Model Accuracy AUC Sensitivity Specificity

Demo+MMSE MLP 0.66 (0.13) 0.65 (0.07) 0.38 (0.26) 0.81 (0.18)

RF 0.61 (0.18) 0.60 (0.12) 0.24 (0.23) 0.82 (0.19)

SVM 0.59 (0.17) 0.42 (0.20) 0.10 (0.14) 0.89 (0.15)

Speech MLP 0.83 (0.10) 0.88 (0.03) 0.81 (0.25) 0.87 (0.14)

RF 0.82 (0.07) 0.84 (0.05) 0.64 (0.16) 0.96 (0.07)

SVM 0.77 (0.13) 0.85 (0.08) 0.54 (0.27) 0.94 (0.08)

Speech+ demo MLP 0.81 (0.13) 0.85 (0.05) 0.76 (0.19) 0.86 (0.13)

RF 0.80 (0.15) 0.86 (0.05) 0.64 (0.27) 0.94 (0.11)

SVM 0.78 (0.12) 0.83 (0.05) 0.68 (0.27) 0.87 (0.13)

Speech+MMSE MLP 0.83 (0.11) 0.83 (0.04) 0.74 (0.28) 0.91 (0.11)

RF 0.84 (0.09) 0.85 (0.04) 0.68 (0.19) 0.96 (0.09)

SVM 0.81 (0.11) 0.82 (0.03) 0.71 (0.18) 0.89 (0.13)

Speech+ demo+MMSE MLP 0.81 (0.13) 0.84 (0.05) 0.64 (0.20) 0.93 (0.12)

RF 0.82 (0.09) 0.83 (0.03) 0.62 (0.19) 0.95 (0.07)

SVM 0.80 (0.10) 0.82 (0.04) 0.67 (0.28) 0.89 (0.13)

Notes: The values represent the mean (SD) over 10 folds. Sensitivity in all models refers to the ability to distinguish the AD group, whereas specificity refers

to the ability to distinguish the FTLD group. Results of the best performingmodels based on the accuracy and AUC are highlighted in bold.

Abbreviations: ADNC, Alzheimer’s disease neuropathologic change; AUC, area under the curve; FTLD, frontotemporal lobar degeneration; MLP, multi-layer

perceptron classifier; MMSE,Mini-Mental State Examination; RF, random forest classifier; SD, standard deviation; SVM, support vector machine classifier.

included acquisition pulse sequence as a covariate of no interest, and

resultswere considered significant atP<0.05after falsediscovery rate

(FDR) correction for multiple comparisons.

3 RESULTS

3.1 ADNC versus FTLD

3.1.1 Classification results

Among the models trained with speech features, the MLP model

showed the highest accuracy (83%)with an area under the curve (AUC)

of 0.88 in distinguishing patients with ADNC from those with FTLD

(Table 2). The model correctly identified 52 FTLD patients out of 60

and 28patientswithADNCout of 36. The eight participantswith FTLD

that the model missed included five with svPPA, one with bvFTD, one

with amyotrophic lateral sclerosis FTD, and one with naPPA. The eight

participants with AD that the classifier incorrectly predicted included

seven patients with lvPPA and one with svPPA. This model’s perfor-

mance was comparable to the RF model that was trained with speech

features and MMSE scores (accuracy = 84%, AUC = 0.85). All mod-

els generally showed good specificity scores (the ability to distinguish

FTLD pathology in this task > 0.85) except the baseline models, which

were trained without speech features. In particular, RF models trained

with speech features only or speech + MMSE showed the highest

specificity (0.96). Adding MMSE scores increased the accuracy of the

RF and SVM models (RF = 2%, SVM = 4%), whereas adding demo-

graphic features decreased the accuracy of the MLP and RF models

(−2% for both models). Adding MMSE and demographics together to

themodels showedmixed effects on themodels (MLP=−2%, RF=0%,

SVM= 3%).

3.1.2 Selected features from the best performing
speech model

The average number of features selected in each fold in the best per-

forming speech model was 37.9 (±2.13), with a range from 34 to 41.

Features selected at least 9 times in the 10 folds included verbs in base

form per 100 words (n = 10), verbs (in 3rd sg.) per 100 words (n = 10),

word length of nouns (n = 10), percent of speech (n = 9), ambiguity of

content words (n= 10), lexical diversity (n= 10), pause rate perminute

(n = 10), frequency of nouns (n = 10), total number of words (n = 10),

pitch range (n = 10), familiarity of content words (n = 9), total number

of syllables (n = 10), concreteness of nouns (n = 9), and comparative

adjective countsper100words (n=9). The feature importanceof these

features in absolute SHAP values is displayed in Figure 1A.

Among the 14 features that were most frequently selected, seven

features showed significant group differences: base verb counts per

100words, third singular verbs per 100words, comparative adjectives

per 100 words, averaged ambiguity of content words, lexical diver-

sity, total number of words, and total number of syllables (Figure 1B).

Patients with ADNC produced more verbs in base form and compara-

tive adjectives per 100 words compared to FTLD patients (base verbs:

t = 2.79, P = 0.007, comparative adjectives: W = 1214.5, P = 0.016),

whereas they produced fewer verbs in the third person singular form

(W = 636.5, P = 0.001). Content words that patients with ADNC pro-
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CHO ET AL. 7

F IGURE 1 Selected features in the best performing speech-based classifier for the distinction between ADNC and FTLD. A, Feature
importance values (|Shapley additive explanations|) of the 14most frequently selected speech features per fold in the distinction of ADNC
versus FTLD. Each data point represents the feature importance value for one patient in the fold. B, Group comparisons of the 14most frequently
selected speech features. The scales of the features were z scored based onHC’s mean and standard deviation for better visualization. HC’s values
are plotted in gray for reference. Seven features showed significant group comparisons between ADNC and FTLD: *P< 0.05; **P< 0.01. ADNC,
Alzheimer’s disease neuropathologic change; FTLD, frontotemporal lobar degeneration; HC, healthy controls

duced were more ambiguous than those produced by patients with

FTLD (t = 2.48, P = 0.015). Patients with FTLD used more limited

vocabularies (lower lexical diversity) compared to those with ADNC

(t = 3.6, P = 0.001), and they produced fewer words and syllables

when describing the same picture compared to thosewithADNC (total

words: t = 2.56, P = 0.013, total syllables: t = 2.09, P = 0.04). The

other features, such as word frequency or length, seemed to help the

classification of ADNC versus FTLD, but did not significantly differ by

group.

3.2 Patients versus HC

3.2.1 Classification results

The MLP model trained only with speech features showed the high-

est accuracy (93%) with 0.93 AUC, correctly identifying 89 patients

out of 96 (= 36 AD + 60 FTLD) and 77 HCs out of 83 (Table 3). The

seven patients that the model incorrectly predicted included three

participants with lvPPA, two with bvFTD, and two with progressive

supranuclear palsy. The models generally showed high performance

(accuracy > 89%) when speech features were included, compared to

the baseline models that were trained with demographics and MMSE

scores only. The sensitivity (the ability to distinguish patients in this

task) improved when MMSE scores were added to speech features

(speech onlymodels: 0.89–0.93, speech+MMSE: 0.9–0.95). The speci-

ficity (the ability to identify HC in this task) of the MLP speech model

(0.9) was the second highest, preceded by that of the SVM speech

+ MMSE model (0.91). The RF model trained with speech features

and MMSE scores showed a slightly higher AUC value (0.94) with

lower accuracy (0.92) compared to theMLPmodel trainedwith speech

features. Adding demographics or MMSE scores did not dramatically

change the performance of themodels in terms of accuracy.

3.2.2 Selected features of the best performing
speech model

The average number of features selected in each fold for the classifi-

cation of HC versus patients was 31.7± 3.23, ranging from 25 to 35.

Features thatwere selected at least 9 times out of 10 folds included the

number of conjunctions (n= 10), determiners (n= 10), and possessives

per 100 words (n = 9); averaged word frequency of all words (n = 10)

and of nouns (n= 10); averagedword length of all words (n= 10) and of

contentwords (n=10); lexical diversity (n=10); total number ofwords

(n = 9); total number of unique adjectives (n = 10); unique content

words (n = 10); unique words (n = 10); pause rate per minute (n = 9);

and total speech duration (n = 10). The feature importance values of

these features are presented in Figure 2A.

Patients produced fewer unique adjectives (t = 5.41, P < 0.001)

and unique content words (W = 2757, P = 0.008) compared to

HC, while they produced more conjunctions than HC (W = 1656.5,

P= 0.026; Figure 2B). Words that patients produced were shorter (all:

W= 3558.5, P< 0.001; content words:W= 3482, P< 0.001) andmore

frequent (all: t = −5.61, P < 0.001; nouns:W = 1164, P < 0.001) than

those produced by HC. Patients spent less time describing the same

picture (t = 3.73, P < 0.001), with more frequent pauses (W = 633,

P < 0.001) compared to HC. They also used less diverse vocabulary

(W = 2843, P = 0.001) with fewer words in total (t = 4.24, P < 0.001)

than HC.
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8 CHO ET AL.

TABLE 3 Classification results of patients versus HC.

Value Model Accuracy AUC Sensitivity Specificity

Demo+MMSE MLP 0.72 (0.23) 0.86 (0.05) 0.82 (0.14) 0.62 (0.25)

RF 0.84 (0.16) 0.92 (0.03) 0.82 (0.13) 0.79 (0.29)

SVC 0.54 (0.27) 0.75 (0.09) 0.57 (0.21) 0.66 (0.32)

Speech MLP 0.93 (0.06) 0.93 (0.04) 0.93 (0.08) 0.90 (0.12)

RF 0.91 (0.09) 0.89 (0.05) 0.92 (0.08) 0.86 (0.21)

SVC 0.89 (0.09) 0.90 (0.06) 0.89 (0.07) 0.84 (0.17)

Speech+ demo MLP 0.89 (0.11) 0.92 (0.03) 0.90 (0.08) 0.85 (0.22)

RF 0.91 (0.09) 0.90 (0.05) 0.83 (0.32) 0.87 (0.22)

SVC 0.91 (0.11) 0.83 (0.09) 0.84 (0.32) 0.84 (0.26)

Speech+MMSE MLP 0.92 (0.08) 0.94 (0.03) 0.93 (0.07) 0.89 (0.15)

RF 0.91 (0.09) 0.88 (0.07) 0.95 (0.06) 0.83 (0.21)

SVC 0.91 (0.06) 0.89 (0.06) 0.90 (0.07) 0.91 (0.10)

Speech+ demo+MMSE MLP 0.92 (0.08) 0.91 (0.05) 0.94 (0.08) 0.87 (0.16)

RF 0.92 (0.10) 0.91 (0.05) 0.74 (0.40) 0.88 (0.18)

SVC 0.91 (0.08) 0.86 (0.07) 0.94 (0.06) 0.86 (0.21)

Notes: The values are mean (SD) over 10 folds. Sensitivity in all models refers to the ability to distinguish the patients. Results of the best performing models

based on the accuracy and AUC are highlighted in bold.

Abbreviations: AUC, area under the curve; HC, healthy control; MLP, multi-layer perceptron classifier; MMSE, Mini-Mental State Examination; RF, random

forest classifier; SD, standard deviation; SVM, support vector classifier.

F IGURE 2 Selected features in the best-performing speech-based classifiers for the distinction between patients andHCs. A, Feature
importance values (|Shapley additive explanations|) of themost frequently selected features per fold in the distinction of patients versus HC. Each
data point represents the feature importance value for one patient in the fold. B, Group comparisons of themost frequently selected features. The
scales of the features were z scored based on the HC’s mean and standard deviation for better visualization. HC’s values are plotted in gray, and
patients are in blue. *P< 0.05, **P< 0.01, ***P< 0.001; HC, healthy controls

3.3 Imaging

3.3.1 GM atrophy

As shown in Figure 3 and Table 4, participants with ADNC demon-

strated lower GM volumes than HC (Figure 3A) in the left hemisphere

in the default mode network (DMN) parts A and B, as well as the left

temporal parietal, visual A, dorsal attention A and B, limbic A, salience

A, and control A and B networks, which covermuch of the frontal, tem-

poral, and parietal cortex, as well as some occipital lobe. Participants

with FTLDexhibited lowerGMvolume relative toHC in bilateral limbic

A and B, temporal parietal, and salience A networks, in addition to left
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CHO ET AL. 9

F IGURE 3 Comparisons of cortical graymatter (GM) volumes between (A) participants with Alzheimer’s disease neuropathologic change
(ADNC) and healthy controls (HC). B, Patients with frontotemporal lobar degeneration (FTLD) versus HC. C, Patients with ADNC compared to
those with FTLD. D, Significant association of GM volume to noun frequency in ADNC. E, Significant association of GM volume to noun frequency
in FTLD. F, Significant association of GM volume to pause rate in FTLD. All scale bars represent t statistics

networks salienceB, control B andDMNBandC, and rightDMNBnet-

work regions, which cover most of the frontal and temporal cortices,

as well as some parietal cortex (Figure 3B). Participants with FTLD

exhibited lower GM volumes relative to those with ADNC in bilat-

eral limbic A, as well as right limbic B and salience A, which consist of

bilateral anterior inferior temporal lobe, along with right orbitofrontal,

insular, medial frontal, and precentral cortex, and supramarginal gyrus

(Figure 3C). Participants with ADNC demonstrated atrophy relative to

FTLD in left visual A, dorsal attention A, and control C networks, which

consist of much of the lateral occipital lobe, as well as some posterior

parietal lobule and posterior cingulate cortex (Figure 3C).

3.3.2 Imaging regressions

As shown in Figure 3 and Table 4, for participants with ADNC

(Figure 3D) and FTLD (Figure 3E), increased frequency of nouns

was significantly associated with atrophy in left limbic regions, which

largely consist of anterior inferior temporal cortex. Furthermore, in

participants with FTLD, a higher pause rate was associated with

atrophy in the left salience network, which includes inferior frontal,

orbitofrontal, and middle frontal cortex, along with cingulate cortex

and insula (Figure 3F).

4 DISCUSSION

We used automated lexical and acoustic pipelines to extract speech

features from naturalistic speech samples and trained machine learn-

ing classifiers to distinguish participants with FTD phenotypes by their

likely underlying pathology (ADNC vs. FTLD). Our classification sys-

tems trained with speech features performed well, with 83% accuracy

(AUC = 0.88) for identifying patients with likely underlying ADNC

versus FTLD, and 93% accuracy (AUC = 0.93) for distinguishing all

participants with FTD phenotypes from healthy individuals. These

results suggest that speech features automatically extracted from 1

minute picture descriptions can be used to help identify participants

who present with an FTD phenotype but are likely to have underly-

ingADNC.We applied an interpretable AI approach to show important

features and tested group differences in those features. For additional

neuroanatomical validity we associated some of the most distinct

speech features with GM atrophy in functional neural networks. We

discuss these findings below.

Althoughall patients in our studypresentedwith anFTDphenotype,

ourmodels indicated linguistic patterns thatwere distinct for the likely

underlying pathology, differentiating underlying ADNC from FTLD.

Participants with likely ADNC produced more verbs in base form (e.g.,

“take”) but fewer verbs in the third singular present tense (e.g., “takes”)

per 100words.We and others have observed a similar finding in previ-

ous studies,11,50,51 inwhichpatientswith amnestic or non-amnesticAD

presentations producedmore inflectional errors (e.g., “She run” instead

of “She runs”) and fewer tense-inflected verbs thanHC.Wehave previ-

ously shown that individuals with bvFTD or svPPA had normal counts

of tense-inflected verbs, and they were the majority of our current

FTLD group (>50%).44 Other reports51 have also found that partic-

ipants with the amnestic AD presentation produced more frequent

inflectional errors than HC, whereas individuals with svPPA did not

differ from HC. It seems that the number of tense inflections is a use-

ful measure in distinguishing ADNC from FTLD pathology. The exact

nature of this phenomenon should be investigated further, preferably

with detailed neuroanatomical and neuropathological correlates.

We found high ambiguity scores in participants with ADNC but not

in those with FTLD. Words with high ambiguity scores (e.g., “some-

thing”) are easier to access compared to less ambiguous,more concrete

words (e.g., “stool”). In a previous study, we found that high ambiguity

scores were a distinct feature of patients with a semantic impairment

rather than grammatical or behavioral impairment.44 naPPA patients

may compensate for impaired grammatical capacity by selecting more
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10 CHO ET AL.

TABLE 4 Imaging results from comparing GM volumes from each of the Yeo 17 networks, split by hemisphere, between patients with ADNC
andHC, patients with FTLD andHC, and between patients with ADNC and FTLD.

Imaging analysis Region t value P value

ADNC atrophy Left default B 4.78 <0.001

Left default A 2.73 0.032

Left temporal parietal 6.39 <0.001

Left visual central (visual A) 3.23 0.011

Left dorsal attention B 3.10 0.013

Left dorsal attention A 3.29 0.01

Left limbic A 4.29 <0.001

Left salience/ventral attention A 3.49 0.007

Left control A 3.71 0.004

Left control B 4.84 <0.001

FTLD atrophy Left limbic A 7.51 <0.001

Left limbic B 3.77 0.003

Right limbic A 6.06 <0.001

Right limbic B 2.49 0.04

Left temporal parietal 3.99 0.002

Right temporal parietal 2.56 0.037

Left salience/ventral attention A 3.40 0.007

Left salience/ventral attention B 3.14 0.011

Right salience/ventral attention A 3.13 0.011

Left control B 2.80 0.023

Left default B 5.55 <0.001

Left default C 2.76 0.023

Right default B 3.04 0.013

ADNC to FTLD atrophy Left limbic A 4.33 <0.001

Right limbic A 4.88 <0.001

Right limbic B 2.91 0.033

Right salience/ventral attention A 2.68 0.045

Left visual central (visual A) –3.22 0.017

Left dorsal attention A –3.90 <0.001

Left control C –2.80 0.038

ADNC frequency (noun) Left limbic A –4.10 0.042

FTLD frequency (noun) Left limbic A –3.84 0.036

FTLD pause rate Left salience/ventral attention B –3.52 0.047

Notes: Regressions were also run, relating speech features to the GM volumes from each of the atrophied networks for each patient group, respectively. All

results considered significant at P< 0.05 after FDR correction for multiple comparisons.

Abbreviations: ADNC, Alzheimer’s disease neuropathologic change; FDR, false discovery rate; FTLD, frontotemporal lobar degeneration; GM, gray matter;

HC, healthy control.

precise words with a lower ambiguity score.52,53 Many people with

amnestic AD presentation also have difficulty accessing words, which

may be related to impaired working memory or to the spread of dis-

ease frommedial tomore lateral parts of the left temporal lobe. Indeed,

in another study, we found impaired naming in people presenting with

synucleinopathies who had concomitant ADNC and this was directly

associatedwith a high p-tau level in their CSF.54 Thus, ambiguity scores

may not be sensitive enough to detect individuals with likely underly-

ing FTLD versus ADNC when various FTD phenotypes are included.

In our highly phenotypically diverse patient cohort, word ambigu-

ity was sensitive to likely underlying ADNC. Future studies of digital

speech assessments in neurodegenerative conditions should consider

different clinical scenarios when planning their analyses.

Noun frequency was high in our AD and FTLD groups compared

to healthy speakers, and we found partial associations between this

feature and decreased GM volumes in the left limbic A network. Both
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CHO ET AL. 11

ADNC and FTLD groups demonstrated atrophy in this network, which

encompasses much of the left anterior temporal lobe (ATL), and pre-

vious studies have shown that atrophy in this region is associated

with increasedword frequency in patients with FTD.35,44,55,56 Atrophy

in these areas in both groups seems to be generally associated with

increased word frequency. Words with higher frequency (e.g., “chair”

vs. “stepstool”) are typicallymore accessible as they are learned earlier

and accessed more frequently in the language acquisition process.36

This is a frequently seenhallmark in aphasiapatientswith injury to tem-

poral regions involved in language processing including anterior parts

of the left temporal lobe.

Pause rate was increased in both groups, yet it was significantly

associated with GM volume loss in parts of the left salience network

only in patients with FTLD. Increased pausing while speaking is often

related to word finding difficulty, but this could result from injury to

different cognitive processes: in people with ADNC this may result

from impairment of the audio–verbal loop,57 while in FTLD this could

arise from impaired social–executive interaction in the process of lex-

ical selection or agrammatism. The fronto-insular cortex, part of the

salience network, has been structurally and functionally linked to FTD

syndromes, particularly bvFTD,58 and this is suggested by our MRI

analysis. In another study,we foundhigh pause rates in all PPAvariants,

most profoundly in naPPA,59 and in another classification study this

feature differentiated subtypes of PPA.60 Our MRI analysis supports

the association of frequent pausing in FTLD to the salience network.

However, we were unable to localize this speech feature in our ADNC

group, and this could be related to our chosen methodology and net-

work scheme, designed to capture structural involvement by network.

Future studies can consider alternative approaches using structural or

functional neuroimaging to localize increased pausing in ADNC.

It has been observed that adjective counts and lexical diversity of

patients with cognitive impairment decreased compared to HC.11,44,61

Additionally, patients with various types of dementia tended to pro-

duce shorter and more frequent words than HC.11,44,62,63 These

features were also selected in our analysis. These observations along

with the high performance of our speech model provide accumulating

evidence that naturalistic speech is informative in screening individ-

uals with different presentations of dementia and diverse underlying

pathologies. Our study emphasized the power of speech analysis in in

vivo screening for the underlying pathology in a phenotypically diverse

group of patients.

Our participants did not differ in any major demographic char-

acteristics, and this could explain the insignificant effect of adding

demographics to our models. However, this finding may not be gener-

alizable to other cohorts, when considering individuals with the typical

amnestic ADpresentation, as they tend to be older than FTLDpatients.

MMSE scores, however, had a limited effect on our model’s perfor-

mance, dissociating the underlying pathology of patients only when

combined with speech features. Our participants with ADNC had sig-

nificantly lowerMMSE scores compared to the FTLD group. The lower

MMSE scores in ADNC may have helped distinguish patients’ under-

lying pathology in our particular cohort, but this finding might not be

generalizable to all patient populations.

While this study demonstrated high performance in automatic

classification of likely underlying pathology in people with FTD phe-

notypes, it has limitations. First, the models included several similar

features. Elastic net regression is robust to collinearity, but other fea-

ture dimensionality reduction techniques, such as principal component

analysis, may also be considered. We did not try feature reduction

here, because reduced features are sometimes difficult to interpret.

Second, the sample size of the AD group was smaller than that of the

FTLD group, and our studywas not validated in an independent sample

of patients. Future studies will need to verify our findings with more

patients with biological evidence of the pathological grouping. Addi-

tionally, we could not examine the effect of mild depression and any

depression medication in our cohort. Mild depression is a commonly

co-occurring psychiatric symptom with neurodegeneration, but we

only had limited information about themedication usage in our partici-

pants. Future studies will need to consider the effect of any psychiatric

medication when studying these populations. For our structural imag-

ing analysis, we used regions of interest based upon control resting

state functionalMRI,whichmaybe suboptimal for investigating associ-

ations with language performance, though we found significant associ-

ations between some of these regions and the language features in our

study. Last, we extracted lexical features from transcripts generated

by human annotators. Current automatic speech recognition systems

have a high word error rate when processing patients’ speech, but we

expect future work will enable complete automation of transcription

pipelines for scalable analyses of patient speechwith higher accuracy.

Interesting directions for future studies include the comparison

of acoustic and lexical features, as well as the investigation of other

clinical assessments in the baseline models. Considering that acous-

tic features were less frequently selected by the models than lexical

features, it might be the case that classifiers trained with lexical fea-

tures outperform those trained with acoustic features. Also, we only

includedMMSEscores in thebaselinemodels due to limited availability

of other clinical assessments, but standard language testsmay improve

the performance of baseline models. Future studies will need to deter-

minewhether speech-based systems consistently outperform baseline

models trainedwith various clinical assessment scores.

To conclude, natural speech of people with FTD syndromes briefly

describing a picture can be used to automatically classify them by their

underlying neuropathology asADor FTLD. Such in vivo automatic clas-

sifiers derived from low-cost, non-invasive digital speech assessments

could be extremely useful in futuremulti-center trials.
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